

Laboratoire en Innovation, Technologie, Économie et Management

Une approche multi-agent basée sur la confiance pour évaluer la performance des plateformes de crowdsourcing d'idées

Amine Louati Christine Balagué Mehdi Elmoukhliss

Institut mines Télécom, Télécom École de Management, LITEM, France

Journées Francophones sur les Systèmes Multi-Agents (JFSMA)

Jeudi 06 Juillet 2017

Context

2 Concepts and Agent Architecture

3 Trust model

- 4 Social dynamics
- 5 Experimental setup and results evaluation
- 6 Conclusion and Future Research

- 2 Concepts and Agent Architecture
- 3 Trust model
- 4 Social dynamics
- 5 Experimental setup and results evaluation
- Conclusion and Future Research

Context: Crowd Innovation

Existing research

- Model users and their relationships using a coopetition network [Hu et Zhang,2014] [Levine and Prietula, 2014]
- Focus on examining users' behavior (e.g., roles, motivation, ...) [Bullinger et al.,2010] [Muhdi and Boutellier, 2011]
- Conduct exploratory analysis on static data derived using quantitative and qualitative methods [Hutter et al., 2011] [Fuller et al. 2014]
- \Rightarrow To improve idea generation quality

Limits

- $\ensuremath{\textcircled{}}$ Mono-relational model of the coopetition network
- \odot Lack support for the social dimension (trust, interactional history, ...)
- © Little is known about the social dynamics of users and how their relationships may evolve in the platform

Our solution

To address these three limits, we propose:

- ③ A multi-relational coopetition network model which takes into consideration cooperative, competitive and coopetitive relationships.
- ③ A trust model as trust is considered as the main mechanism that enables agents to reason about the confidence of others and guides their decision-making process when they want to interact.
- ② An agent-based simulation as agents have demonstrated the ability to support interactions and their dynamics while using reasoning, extraction and representation of knowledge as well as social metaphors like trust.

Context

Concepts and Agent Architecture

3 Trust model

- 4 Social dynamics
- 5 Experimental setup and results evaluation
- Onclusion and Future Research

Concepts definition

Snapshot $G_i = \langle V, E_i, t_i \rangle$

- $V = \{a_1, a_2, ..., a_n\}$ is a set of *n* agents;
- $E_i = \{E_{i,pos}, E_{i,neg}\}$ is a set of directed edges where $E_{i,l} \subseteq V \times V \forall l \in \{pos, neg\}$ is the set of edges w.r.t the interaction type;
- t_i is a time period.

Coopetition network $G_{[t_0,t_z]} = \langle V, E, W \rangle$

- $V = \{a_1, a_2, ..., a_n\}$ is a set of *n* agents;
- $E = \{E_{coo}, E_{com}, E_{cop}\}$ is a set of directed edges where $E_I \subseteq V \times V \forall I \in \{coo, com, cop\}$ is the set of edges w.r.t the R_I relationship;
- W : E → [0, 1] is a weight function mapping directed edges to their trust values;

Agent architecture

Selon Castelfranchi et al., 1998 : "Only a cognitive agent can trust another agent".

Figure: Architecture of a cognitive agent based on trust

Concepts and Agent Architecture

3 Trust model

- Social dynamics
- 5 Experimental setup and results evaluation
- Conclusion and Future Research

Trust model

Our trust model is composed of two dimensions:

- The environmental dimension: corresponds to the perception evaluated on the basis of information extracted from the coopetition network
 - Climatic trust
 - Social trust
- The dyadic dimension: represents **the confidence** of one in another and computed on the basis of their interactional history while taking into account the time-related aspect in the building process.

Climatic Trust

Observed Trend (Tr_i)

Let

• $G_{i-1} = \langle V, E_{i-1}, t_{i-1} \rangle$ be a snapshot of time period t_{i-1}

• *Pset_i* be the set of perceived actions randomly chosen from E_{i-1}

 $Tr_i = \langle V', E' \rangle$, is a sub-graph of G_{i-1} induced by *Pset* such as $V' \subseteq V$ is a set of agents and $E' = E_{i-1} \cap V'$ is the set of directed edges between them

$$\mathit{CTrust}(\mathsf{a}_k,\mathit{Tr}_i) = rac{\mathit{cardinal}(\{\mathit{ac}^+ \in \mathit{Pset}_i\})}{\mathit{cardinal}(\mathit{Pset}_i)}$$

Social Trust

Egocentric Network

Let

•
$$G_{[t_0,t_i]}$$
 be a coopetition network graph
• $Z \in \mathbb{N}$ be the relative strength of memory
 $H_{[t_{i-Z},t_i]} = \langle V', E' \rangle$ is a sub-graph of $G_{[t_{i-Z},t_i]}$ centered on a_k such as
 $V' = \{a_j \in V \mid (a_k, a_j) \in G_{[t_{i-Z},t_i]}\} \cup \{a_k\}$ and $E' = \{\bigcup_{x=i-S}^{i} E_x \cap a_k\}$

$$STrust(a_k, H_{[t_{i-Z}, t_i])} = rac{cardinal(\{ac^+ \in E'\})}{cardinal(E')}$$

Environmental Dimension

Trust aggregation

$$\textit{ETrust}(\textit{a}_k,\textit{Tr}_i \cup \textit{H}_{[t_{i-Z},t_i]})) = \textit{w} \times \textit{CTrust}(\textit{Tr}_i) + (1 - \textit{w}) \times \textit{STrust}(\textit{a}_k,\textit{H}_{[t_{i-S},t_i]})$$

The environmental trust value is used to qualify the perception

- $ETrust(a_k, Tr_i \cup H_{[t_{i-7}, t_i]})) \in [0, \frac{1}{3}] \Rightarrow perceived impression = competition$
- $ETrust(a_k, Tr_i \cup H_{[t_{i-7}, t_i]})) \in [\frac{1}{3}, \frac{2}{3}] \Rightarrow$ perceived impression= coopetition
- IS $ETrust(a_k, Tr_i \cup H_{[t_{i-7}, t_i]})) \in]\frac{2}{3}, 1] \Rightarrow$ perceived impression= cooperation

Dyadic Dimension

Temporal Jøsang's trust model

$$b = \frac{p}{p+n+1}$$
 $d = \frac{n}{p+n+1}$ $u = \frac{1}{p+n+1}$ $b+d+u = 1$

where:

$$p = \sum_{l=0}^{l=i} \left(ac_{jl}^{+} * e^{-\frac{t_i - t_l}{Z}} \right)$$
 is the number of positive actions
$$n = \sum_{l=0}^{l=i} \left(ac_{jl}^{-} * e^{-\frac{t_i - t_l}{Z}} \right)$$
 is the number of negative actions

Evaluation

$$DTrust(a_k, a_j, t_i) = \begin{cases} b & \text{if } u < \theta \\ T_s & \text{if } Ro_k = cooperator \\ T_w & \text{if } Ro_k = competitor \\ T_r & \text{if } Ro_k = coopetitor \end{cases}$$

where $\boldsymbol{\theta}$ is an uncertainty threshold reflecting the reliability of the trust evaluation

Relationship Characterization

Let

- λ_{inf} and λ_{sup} be respectively, the trust lower and the trust upper thresholds
- DTrust(a_k, a_j, t_i) be the dyadic trust value that the agent a_k has in the agent a_j at time period t_j
- $\rho: E \mapsto R$ be a function that links directed edges to the relationships they represent
- $Trust(a_k, a_j, t_i) \geq \lambda_{sup} \Rightarrow \rho((a_k, a_j)) = R_{coo}$
- $\mathbb{T} DTrust(a_k, a_j, t_i) \in]\lambda_{inf}, \lambda_{sup}[\Rightarrow \rho((a_k, a_j)) = R_{cop}$

- 2 Concepts and Agent Architecture
- 3 Trust model
- 4 Social dynamics
 - 5 Experimental setup and results evaluation
 - Conclusion and Future Research

Decision-making process

At each time period t_i of the simulation, every agent has to make the following decisions based on trust evaluation:

- What is its potential for action ? (i.e number of actions to perform)
- With who to interact ? (i.e. known or unknown agent)
- I How to interact with it ? (i.e. positive or negative action)

Potential for action (Pa_k^i)

Let \mathcal{N}_k be he maximum number of possible actions that an agent a_k can perform at each time period t_i

Qualified perception Role of agent <i>a_k</i>	competition	coopetition	cooperation
competitor	high $Pa_k^i(\mathcal{N}_k)$	medium $Pa_k^i\left(\frac{N_k}{2}\right)$	low $Pa_k^i\left(\frac{N_k}{4}\right)$
coopetitor	medium $Pa_k^i\left(\frac{N_k}{2}\right)$	high $Pa_k^i(\mathcal{N}_k)$	medium $Pa_k^i \left(\frac{N_k}{2}\right)$
cooperator	low $Pa_k^i\left(\frac{N_k}{4}\right)$	medium $Pa_k^i\left(\frac{N_k}{2}\right)$	high $Pa_k^i(\mathcal{N}_k)$

Table: Potential for action of an agent a_k according to the qualified perception and its role

With who to interact

Agents evolve in crowd innovation environment

- \Rightarrow Agent a_k interacts with:
 - Known agents $LKA_k \subset PIT_k$ such as $|LKA_k| = \alpha * Pa_k^i$
 - cooperator: top trustworthy agents
 - competitor: least trustworthy agents
 - coopetitor: no matter
 - Unknown agents $LUA_k \subset V \setminus \{PIT_k\}$ such as $|LUA_k| = (1 \alpha) * Pa_k^i$

Action rules

Action type Role of <i>a_k</i>	probability of positive action	probability of negative action	
cooperator	$p^{+}=1$	$p^{-} = 0$	
competitor	$p^{+}=0$	$p^{-} = 1$	
co-opetitor	$p^+ = ETrust$	$p^- = 1 - ETrust$	

Table: Actions rules between an agent a_k and an unknown agent $a_j \in LUA_k$

Relatio	a_k and a_j Role of a_k	R _{com}	R _{cop}	R _{coo}
	competitor	$p^+ = 0, \ p^- = 1$	$p^+ = DTrust, \ p^- = 1 - DTrust$	
	cooperator	$p^+ = DTrust, \ p^- = 1 - DTrust$		$p^+ = 1, p^- = 0$
	co-opetitor	$p^+ = 0, \ p^- = 1$	$p^+ = DTrust, \ p^- = 1 - DTrust$	$p^+ = 1, p^- = 0$

Table: Trust-dependent actions rules between an agent a_k and a known agent $a_j \in LKA_k$ for the different relationship types

- 2 Concepts and Agent Architecture
- 3 Trust model
- 4 Social dynamics
- 5 Experimental setup and results evaluation

Conclusion and Future Research

Experimental setup

- n = 1000
- $\mathcal{N}_k = 4$
- α = 0.5
- $cardinal(Pset_i) = \frac{cardinal(E_{i-1})}{10}$

• *Z* = 5

- $\lambda_{inf} = 0.3$ and $\lambda_{sup} = 0.7$
- Simulation duration: 50 time periods
- Roles distribution: homogeneous \Rightarrow 33% of cooperators (C_{coo}), 33% of competitors (C_{com}) and 33% of coopetitors (C_{cop})

• performance_i(
$$C_I$$
) = $\frac{|\{a_k \in C_I \mid Pa_k^i > \frac{N_k}{2}\}|}{|C_I|} \forall I \in \{coo, com, cop\}$

Results

Figure: The performance evolution in an homogeneous platform

- 2 Concepts and Agent Architecture
- 3 Trust model
- 4 Social dynamics
- Experimental setup and results evaluation

6 Conclusion and Future Research

Conclusion

- A multi-relational social network model
- Trust management model built upon two dimensions: environmental and dyadic to guide decision-making process of agents when they interact
- An agent-based model to simulate users' behavior and understand social dynamics in homogeneous platform

Future Research

- Study new and not deterministic action rules
- Examine a dynamic roles distribution where individuals can change roles
- Perform an exploratory and structural analysis of obtained graphs
- Make more simulations while varying the parameters values.

Merci ! Questions ... ?