Formation de coalitions pour une composition de services Web fondée sur la confiance dans les réseaux sociaux

Amine Louati1 Joyce El Haddad2 Suzanne Pinson2

1Institut mines Télécom, Télécom École de Management, LITEM, France

2PSL, Université Paris-Dauphine, LAMSADE CNRS UMR 7243, France

Journées Francophones sur les Systèmes Multi-Agents (JFSMA)

Jeudi 06 Juillet 2017
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Motivation

Service Composition

- Satisfies a **complex user needs** which cannot be achieved by an **atomic service**
- Allows the definition of **value added** applications, which have the potential to reduce effort and time of development [Ponn 02]
Motivation

The model : a multi-agent model

- Able to perform complex and distributed tasks
- Support different forms of interaction including negotiation and coordination
- Capable to extract and interpret information

Existing multi-agent approaches

- Planning (graph, state, actions) [Paik 06, Ponn 02, Siri 04, Tong 11, Xu 11]
- Coordination (reasoning, roles, negotiation) [Charif 13, Siala 11, Wang 06, Maam 05]
- Cooperation (organization, preferences, sociability) [Grif 03, Ermo 03, Mull 06, Hong 09, Bour 09]
Proposition : a coalition formation process

Challenges

1. How to integrate social dimension in the coalition process
 ⇒ Social trust model

2. How to ensure providers autonomy to decide with whom to cooperate
 ⇒ Endow agents with the ability to participate in the coalition process according to their preferences

3. How to enable agents to leave coalition when they are not satisfied
 ⇒ Definition of an incremental, dynamic and overlapping protocol for member selection
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Concepts Definitions

- **Social network**: Given a set $A = \{a_1, a_2, \ldots, a_l\}$ of agents and a set $E \subseteq A \times A$ of edges, a social network is a connected graph $G = \langle A, E \rangle$ where an edge $(a_k, a_j) \in E$ represents an asymmetric trust relationship between a_k and a_j.

- **Agent**: An agent $a_k \in A$ is an autonomous entity such that $a_k = \langle S_k, \text{Trust}, ET, CT, \lambda_{\text{Inf}} k, \lambda_{\text{Sup}} k, \beta_k, B\text{list}_k \rangle$.

- **Service**: A service s is a tuple such as $s = (in, out, f, q^1, q^2, q^3)$.

Louati, A., El Haddad, J., Pinson, S.
A Multilevel Agent-based Approach for Trustworthy Service Selection in Social Networks in IAT 2014
User query: Let F be the definition domain of available functionalities. A user query $Q = \{f_1, f_2, \ldots, f_n \mid \forall 1 \leq i \leq n, f_i \in F\}$ is a finite set of functionalities.

Coalition: Let Q be a user query. A coalition $c = \{(f_1, x_1), \ldots, (f_i, x_i), \ldots, (f_n, x_n) \mid \forall i \in [1, n], \exists k \in [1, s] \text{ such as } x_i = a_k \text{ et } a_k \in A_i\}$ is a set of agents that satisfy Q.
Multi-agent model

Figure – A broker-based multi-agent model for dynamic service composition

Agents cooperate to satisfy complex user’s needs based on decentralized decision making guided by trust in cooperation.
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Trust

Trust in cooperation

\[CT(a_k, a_j) = \begin{cases} 1 & \text{if } NbSoll_k[j] = 0 \\ \frac{NbMem_k[j]}{NbSoll_k[j]} & \text{otherwise} \end{cases} \]

Level of reliability of a candidate \(a_j \) according to a member \(a_k \) based on their history of cooperation

Trust in coalition

\[evalC(a_k, c_z) = \sum_{a_t \in c_z} \frac{CT(a_k, a_t)}{|c_z|} \]

Degree of satisfaction of a candidate \(a_k \) to join a coalition \(c_z \)
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Service discovery and selection process

Multi-Relationnel Social Network

Step 1: Service Discovery

Social Trust

Functional Matching

Trust-Relation Social Network
Service discovery and selection process

Step 1: Service Discovery
- Social Trust
- Functional Matching

Step 2: Trust inference

Multi-Relationnel Social Network

Provider
Recommender
Service discovery and selection process

Step 1: Service Discovery

Step 2: Trust inference

Multi-Relationnel Social Network

Trust-Relation Social Network

Agent	services	Trust
a_2 | s_{21}, f= f_1 | 0.9
a_1 | s_{15}, f= f_1 | 0.585
a_6 | s_{65}, f= f_2 | 0.75
a_2 | s_{24}, f= f_2 | 0.9
a_3 | s_{32}, f= f_2 | 0.51
a_6 | s_{62}, f= f_3 | 0.75
a_9 | s_{94}, f= f_3 | 0.31
a_{10} | s_{102}, f= f_3 | 0.65
Coalition formation process description

Service discovery and selection process

Multi-Relationnel Social Network

Louati, A., El Haddad, J., Pinson, S.
Trust-Based Service Discovery in Multi-relation Social Networks in ICSOC 2012

Louati, A., El Haddad, J., Pinson, S.
A Multilevel Agent-based Approach for Trustworthy Service Selection in Social Networks in IAT 2014

Louati, A., El Haddad, J., Pinson, S.
A Multilevel Agent-based Approach for Trustworthy Service Selection in Social Networks in AAMAS on workshop TRUST 2014

Step 1: Service Discovery

Step 2: Trust inference

Step 3: Service Selection

<table>
<thead>
<tr>
<th>Agent</th>
<th>services</th>
<th>ET</th>
<th>Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2</td>
<td>s_{21}, f = f_1</td>
<td>0.72</td>
<td>0.9</td>
</tr>
<tr>
<td>a_1</td>
<td>s_{13}, f = f_1</td>
<td>0.68</td>
<td>0.585</td>
</tr>
<tr>
<td>a_6</td>
<td>s_{65}, f = f_2</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>a_8</td>
<td>s_{86}, f = f_2</td>
<td>0.74</td>
<td>0.9</td>
</tr>
<tr>
<td>a_3</td>
<td>s_{31}, f = f_2</td>
<td>0.45</td>
<td>0.51</td>
</tr>
<tr>
<td>a_6</td>
<td>s_{62}, f = f_3</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>a_9</td>
<td>s_{98}, f = f_3</td>
<td>0.73</td>
<td>0.31</td>
</tr>
<tr>
<td>a_{10}</td>
<td>s_{102}, f = f_3</td>
<td>0.70</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent</th>
<th>services</th>
<th>Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2</td>
<td>s_{21}, f = f_1</td>
<td>0.9</td>
</tr>
<tr>
<td>a_1</td>
<td>s_{13}, f = f_1</td>
<td>0.585</td>
</tr>
<tr>
<td>a_6</td>
<td>s_{65}, f = f_2</td>
<td>0.75</td>
</tr>
<tr>
<td>a_2</td>
<td>s_{24}, f = f_2</td>
<td>0.9</td>
</tr>
<tr>
<td>a_3</td>
<td>s_{31}, f = f_2</td>
<td>0.51</td>
</tr>
<tr>
<td>a_6</td>
<td>s_{62}, f = f_3</td>
<td>0.75</td>
</tr>
<tr>
<td>a_9</td>
<td>s_{98}, f = f_3</td>
<td>0.31</td>
</tr>
<tr>
<td>a_{10}</td>
<td>s_{102}, f = f_3</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Coalition formation process description

Sequential process composed of three phases:

1. Initial Coalitions Generation (e.g. \(C = \{ c_1 = \{ a_2 \}, c_2 = \{ a_6 \} \} \))
Coalition formation process description

Sequential process composed of three phases:

1. Initial Coalitions Generation (e.g. $C = \{c_1 = \{a_2\}, c_2 = \{a_6\}\}$)
2. Member Selection

$$c \leftarrow \text{argmax}_{1 \leq z \leq |C|} \sum_{a_t \in c_z} ET(a_t)$$
Sequential process composed of three phases:

1. **Initial Coalitions Generation** (e.g. $C = \{c_1 = \{a_2\}, c_2 = \{a_6\}\}$)

2. **Member Selection**

3. **Best coalition choice** $c \leftarrow \text{Argmax}_{1 \leq z \leq |C|} \frac{\sum_{a_t \in c_z} ET(a_t)}{|c_z|}$
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Experimental methodology

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Scenario</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>User query</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>services</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>timeout (ms)</td>
<td></td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

Table – Definition of test scenarios
Performance of the coalition process

Figure – Percentage of generated coalitions per test scenario

Figure – The average frequency of abandon per test scenario
Outline

1. Motivation
2. Background
3. Trust model
4. Coalition formation process description
5. Experimental Results
6. Conclusion and Perspectives
Conclusion

Trust-based dynamic coalition formation process for service composition in social networks

- Incremental, dynamic and overlapping selection protocol
- Agent cooperate based on a decentralized decision-making process guided by trust in cooperation
- Members are able to leave any coalition if they are no longer satisfied
Perspectives

- More experimentation
- Investigate the correlation between the quality of the chosen composite service and the trustworthiness of its members
- Analyze the impact of the variation of the maximum layer value on the coalition formation process
- Integrate negotiation in the coalition formation process: persuasions strategies
- Examine the coalition stability: parallel coalition generation and define the utility of a service composition
Thank you!
Questions … ?