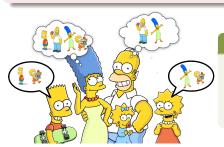
Jeux de coalitions hédoniques à concepts de solution multiples

Thibaut Vallée, Grégory Bonnet

GREYC – UNICAEN

JFSMA 2017 – 5 Juillet 2017

- Jeux de coalitions hédoniques
- 2 Des concepts de solution multiples
- 3 Des préférences sur les concepts
- 4 Conclusion et perspectives


Jeux de coalitions hédoniques

Jeux de coalitions Un problème de partionnement

Question

Comment des agents décident-ils collectivement des coalitions qu'ils vont former?

Différents jeux de coalitions

- à utilité transférable ou non-transférable
- jeux de coalitions hédoniques
 - ⇒ fondés sur des préférences

Un problème de partionnement fondé sur des préférences

Problématique

Trouver un partitionnement des agents qui :

• respecte les préférences individuelles

• afin qu'aucun agent ne désire changer de coalition

Jeux de coalitions hédoniques Une définition formelle

[Dreze and Greenberg, 1980]

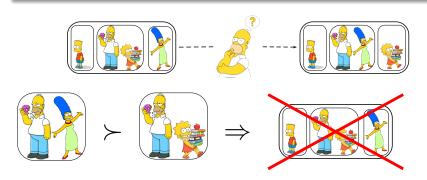
$$HG = \langle N, (\succeq_i)_{a_i \in N} \rangle$$
 avec :

- $N = \{a_1, \dots, a_n\}$: l'ensemble des agents
- $\bullet \succeq_i$: le profil de préférence de l'agent a_i sur les différentes coalitions

Solution d'un jeu

Une partition Π de N qui satisfait au mieux les préférences des agents.

Concepts de solution [Sung and Dimitrov, 2007]


Ensemble des partitions telles qu'aucun agent ne désire ou ne peut changer de coalition au regard d'un critère commun aux agents

Exemple de concept de solution Stabilité au sens de Nash

Nash Stabilité

Aucun agent ne désire quitter sa coalition courante pour une coalition existante

Concepts de solution Une caractérisation des déviations

Déviations individuelles

Nash Stabilité Rationnalité Individuelle Stabilité Individuelle Stabilité Contractuelle Déviation autorisée pour un agent si :

- [...] l'agent préfère une autre coalition existante.
- [...] l'agent préfère être seul.
- [...] l'agent est accepté dans sa nouvelle coalition.
- [...] les agents de sa coalition actuelle acceptent.

Déviations collectives

Déviation autorisée pour plusieurs agents si :

Stabilité du Cœur Pareto-Optimalité [...] tous préfèrent former une nouvelle coalition

[...] cela ne nuit pas à un autre aggent.

Des agents hétérogènes Vis-à-vis des concepts de solution

Constat

Le concept de solution choisi est :

- un a priori sur le comportement des agents,
- une donnée exogène au modèle,
- supposé commun à tous les agents.

Des agents hétérogènes Vis-à-vis des concepts de solution

Constat

Le concept de solution choisi est :

- un a priori sur le comportement des agents,
- une donnée exogène au modèle,
- supposé commun à tous les agents.

Des agents hétérogènes

Et si les agents désiraient satisfaire des concepts différents ?

Question

Comment modéliser cette hétérogénité vis-à-vis des concepts de solutions?

Des concepts de solution multiples

Concept de solutions locaux Du global au local

Concept de solution local à un agent

Ensemble des partitions qui satisfont des propriétés désirées par l'agent ai

Concepts canoniques associés

A chaque concept de solution canonique correspond un concept local à chaque agent. Les contraintes du concept global doivent être vérifiées pour cet agent uniquement.

Exemple de la stabilité au sens de Nash

Globale: Pour tout agent, il n'existe pas de coalition dans la partition qu'il

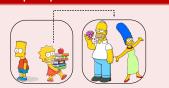
préfère à sa coalition actuelle.

Locale: Pour l'agent a_i, il n'existe pas de coalition dans la partition qu'il

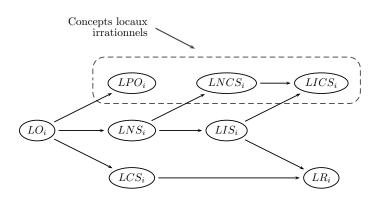
préfère à sa coalition actuelle.

Exemple de partition localement stable La Nash Stabilité selon Bart

Profils de préférences


- ...

Une partition Localement Nash stable



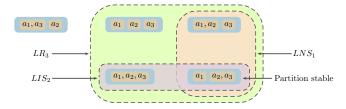
Mais pas pour tous

Propriétés sur les concepts locaux Des relations d'inclusions

Existence de partition localement stable

Pour tout agent a_i , pour tout concept de solution local LSC_i , <u>il existe toujours</u> une partition localement stable.

Des jeux de coalitions hédoniques à concepts de solution multiples


Définition

Un jeu de coalitions $MHG = \langle N, (\succeq_i)_{a_i \in N}, (LSC_i)_{a_i \in N} \rangle$ où :

- $N = \{a_1, \ldots, a_n\}$ est l'ensemble des agents
- \bullet \succeq_i est le profil de préférence de l'agent a_i sur les différentes coalitions
- LSC_i est le concept de solution local choisi par l'agent a_i

Stabilité d'une partition Π

Une partition est stable si $\forall a_i \in N, \Pi \in LSC_i$.

Propriétés sur les MHG Une généralisation des jeux hédoniques

Si les agents considérent le même concept local

Toute partition stable satisfait le concept global SC correspondant

$$\forall a_i, a_j \in N, LSC_i = LSC_j \iff \bigcap_{a_i \in N} LSC_i = SC$$

Un jeu hédonique est un MHG

où $\underline{\text{tous}}$ les agents considérent le $\underline{\text{même concept de solution local}}$

Complexité

La complexité pour trouver une partition stable dans un \emph{MHG} est donnée par :

le concept de solution local $LSC^* \in (LSC_i)_{a_i \in N}$ dont l'équivalent global est le plus complexe

Complexité des concepts globaux : généralement NP-complet. (cf. [Ballester, 2004, Peters and Elkind, 2015])

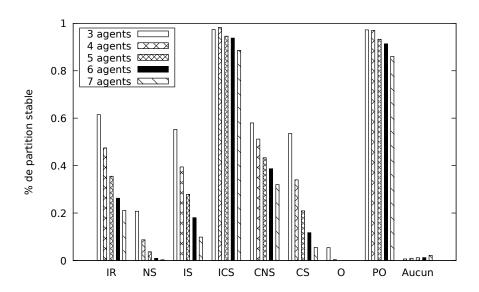
Une analyse empirique (1/3)Nombre de partitions stables

Paramètres

Entre 3 et 7 agents, 1000 jeux aléatoires sur :

- les profils de préférence de chaque agent
- les concepts de solution locaux de chaque agent

Selon les concepts de solution


Concepts rationnels						Concepts irrationnels		
0	NS	CS	IS	IR	MS	CNS	PO	CIS
	0	1	5	30	10	75	175	275

Ordre de grandeur pour 7 agents

Compromis entre rationnalité et irrationnalité

Seuls les agents acceptant des concepts de solution locaux irrationnels peuvent être affectés à une coalition irrationnelle de leur point de vue.

Une analyse empirique (2/3) Des partitions localement stables, mais aussi [...]

Une analyse empirique (3/3) Absence de solution stable

Des partitions stables qui

- satisfont majoritairement :
 - la Pareto-Optimalité
 - la Stabilité Individuelle Contractuelle
- sont souvent irrationnelles,
- ne satisfont pas nécessairement un concept canonique

Des MHG sans solution

Un MHG n'a pas nécessairement de solution stable car :

- les profils de préférences sont incompatible
- certains concepts de solution locaux ne prennent pas en compte que les préférences des autres agents (ie. Nash, ...).

Question

Et si un agent acceptait d'autres concepts locaux en cas de solution vide?

Des préférences sur les concepts

Des jeux de coalitions hédoniques à double profils

Le cas de Lisa

« Je préférerais **l'Optimalité**, mais si ce n'est pas possible, la **Stabilité Individuelle Contractuelle** me convient. »

Des jeux de coalitions hédoniques à double profils

Le cas de Lisa

« Je préférerais **l'Optimalité**, mais si ce n'est pas possible, la **Stabilité Individuelle Contractuelle** me convient. »

Modélisé par des préférences sur les concepts

Pareto Optimalité Locale > Stabilité Individuelle Contractuelle Locale > . . .

Intégré dans un nouveau jeu

Un jeu de coalitions $HG2P = \langle N, LSC, (\succeq_i^C)_{a_i \in N}, (\succeq_i^{LSC})_{a_i \in N} \rangle$ où :

- $N = \{a_1, \dots, a_n\}$ est l'ensemble des agents
- LSC est un ensemble de concepts de solution locaux
- $\succeq_i^{\mathcal{C}}$ est le profil de préférence de l'agent a_i sur les différentes coalitions
- \succeq_i^{LSC} est le <u>profil de préférence</u> de l'agent a_i sur un sous-ensemble non vide des concepts de solution locaux

Concessions sur les partitions (1/2)Un second critère d'évaluation

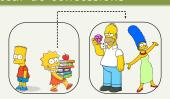
Concéder sur le concept de solution

En l'abscence de partition stable, il s'agit d'accepter de considérer un concept de solution moins préféré.

Vecteur de concession

Une partition Π est évaluée par chaque agent a_i en fonction de LSC_i^* , le concept de solution local satisfait ayant le meilleur rang dans \succeq_i^{LSC} .

$$c_i(\Pi) = \begin{cases} r(LSC_i^*) & \text{si } \exists \ LSC_i \in \succeq_i^{LSC} \\ \infty & \text{tel que } \Pi \in LSC_i \end{cases}$$



Concessions sur les partitions (2/2)Exemple de concessions

Préférences sur les concepts

- Bart : Nash ≻ Stabilité Individuelle ≻ Rationnalité Individuelle ≻ . . .
- Lisa : Optimalité ≻ Stabilité Contractuelle ≻ Stabilité individuelle ≻ . . .
- ...

Vecteur de concessions

	Bart	Homer	Lisa	Marge
$\vec{c}(\Pi)$	1	1	2	1

Une concession nécessaire

Aucune partition n'est simultanément

- Optimale pour Lisa
- Nash Stable pour Bart
- ⇒ Lisa doit concéder pour que la partition soit stable

Comment décider qui doit concéder?

Leximax-concession Un concept de solution global pour les HG2P

Objectif de la Leximax-concession

Trouver une partition qui $\underline{\text{minimise le nombre de concessions}}$ de l'agent ayant le plus concédé, puis du second \dots

La Leximax-concession, étape par étape

- (1) Calculer les vecteurs de concessions
 - $\vec{c}(\Pi)$ [$\infty, 1, 3, 2$] [1, 1, 2, 1] [8, 5, 4, 1] [2, 1, 1, 2] ...
- (2) Trier les vecteurs de concessions par ordre décroissant $\vec{c}(\Pi)^{\downarrow}$ $[\infty, 3, 2, 1]$ [2, 1, 1, 1] [8, 5, 4, 1] [2, 2, 1, 1] ...
- (3) Construire l'ordre leximax entre les vecteurs de concessions leximax : $[2,1,1,1] \succ_{lmax} [2,2,1,1] \succ_{lmax} \ldots \succ_{lmax} [8,5,4,1] \succ_{lmax} \ldots$
- ⇒ Les partitions correspondantes aux vecteurs leximax-dominant sont stables

Existence d'une solution Conditions nécessaires

Une condition mininale

- SC un concept de solution qui garantit que pour tout jeu HG, $SC \neq \emptyset$
- LSC_i l'équivalent local de SC

Pour tout HG2P, il existe nécessairement une partition leximax-stable ssi :

$$\forall a_i \in N, LSC_i \in \succeq_i^{LSC}$$

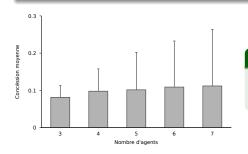
Exemples de tels concepts

Rationnalité Individuelle, Pareto Optimalité, Stabilité Individuelle Contractuelle

Une hypothèse de rationalité

Pour tout agent a_i , la Rationalité locale est présente dans \succeq_i^{LSC} .

« Si les agent ne trouve pas d'accord, chacun forme sa coalition singleton. »



Analyse des concessions (1/2)Concessions moyennes par agent

Protocole expérimental

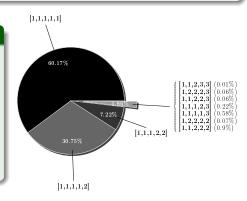
Entre 3 et 7 agents, 1000 jeux aléatoires sur :

- les profils de préférence de chaque agent vis-à-vis des coalitions
- les profils de préférence de chaque agent sur 8 concepts de solution locaux

Peu de concessions nécessaires

- Dans 1 jeu sur 10
- Faible influence de |N|

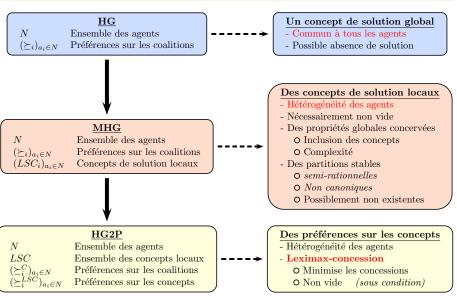
Analyse des concessions (2/2)Vecteurs de concessions observés


Protocole expérimental

5 agents, 10000 jeux aléatoires sur :

- les profils de préférence de chaque agent vis-à-vis des coalitions
- les profils de préférence de chaque agent sur 8 concepts de solution locaux

Peu de concessions nécessaires


- 60% des jeux sont sans concession
- 98% des jeux nécessitent au plus 1 concession pour 2 agents
- 2% des jeux ont des préférences :
 - pour des coalitions incompatibles
 - pour des concepts de solution restrictifs

Conclusion et perspectives

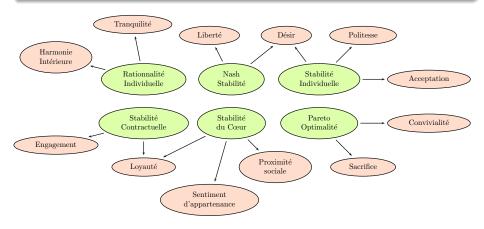
Deux modèles de jeux hédoniques utilisant de multiples concepts de solution

Vers des coalitions éthiques Concepts de solution et valeurs morales

Exemple de la valeur de Shapley-Shubik

Une mesure d'équité dans les jeux à utilité transférable

Et dans les jeux hédoniques?


Les concepts de solution ne sont-ils pas eux aussi porteur de valeur(s) morale(s)?

Vers des coalitions éthiques Concepts de solution et valeurs morales

Et dans les jeux hédoniques?

Les concepts de solution ne sont-ils pas eux aussi porteur de valeur(s) morale(s)?

Jeux de coalitions hédoniques avec des agents éthiques

Construire moralement ses préférences

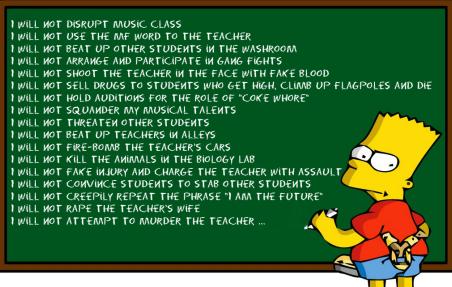
 $\mathsf{Nash} \succ \mathsf{Stabilit\'e} \ \mathsf{Individuelle} \succ \mathsf{Stabilit\'e} \ \mathsf{du} \ \mathsf{Cœur} \succ \mathsf{Pareto} \ \mathsf{Optimalit\'e}$

Comment décider de concéder?

- Concéder ⇒ Ne pas respecter des valeurs morales
- Concéder ⇒ Satisfaire l'agent

⇒ Concéder, une décision éthique?

Leximax-stabilité


Un concept de solution qui :

- Minimise le nombre de valeurs morales « trahies »
- Satisfait des collectivités

⇒ Trouver une partition stable = Trouver des valeurs morales collectives?

Merci pour votre attention Question?

Merci pour votre attention References

Ballester, C. (2004).

Np-completeness in hedonic games.

Dreze, J. H. and Greenberg, J. (1980).

Hedonic coalitions: Optimality and stability.

Peters, D. and Elkind, E. (2015).

Simple causes of complexity in hedonic games.

Sung, S. C. and Dimitrov, D. (2007).

On myopic stability concepts for hedonic games.