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Abstract
In this article, we aim at solving unconstrained gaze esti-
mation problem using appearance-based approach. Unlike
previous methods working in relatively constrained envi-
ronment, we propose an approach that allows free head
motion and significant user-sensor distances using RGB-
D sensor. Our paper presents the following contributions :
(i) A direct estimation by inferring gaze information from
RGB eyes and depth face appearances ;(ii) A channel se-
lection strategy during the learning to evaluate the involve-
ment of each channel in the final prediction ; (iii) Adapting
a 3D face morphable model by integrating a parametric
gaze model to render an important synthetic RGB-D trai-
ning set. We also collect real labeled samples using Kinect
sensor that allows for evaluating the potential of synthetic
learning in handling real configurations and establish an
objective comparison with real learning. Results on seve-
ral users demonstrate the great potential of our approach.

Keywords
Gaze estimation, Eye tracking, Random Forest, Synthetic
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1 Introduction
Gaze estimation plays a key role in several computer vi-
sion applications. In facial expression recognition fields,
it allows access to important information such as the cog-
nitive and expressive state of the person. In human beha-
vior analysis, it allows the point of interest of the user,
which represents the input of various devices such as user
attention while driving and helping disabled people. Seve-
ral industrial solutions are commercialized. They provide
good accuracy on gaze estimation. Some of these solu-
tions use complex hardware specifications (embedded ca-
mera on a head-mounted system) making them inappro-
priate for large scale public use. Other solutions use a range
of infrared cameras to detect corneal reflection, but they
remain very sensitive to illumination conditions. Recently,
researches focus on using low cost devices such as mono-
cular cameras, a comprehensive survey presented in [9],
considers two main categories of gaze estimation, features-

based methods and appearance-based methods.

1.1 Feature-based methods
These methods rely on the extraction of some features such
as the pupil center, the eye corners, the iris contour or the
corneal reflection, which are used to build a 3D eye mo-
del and determine the visual axis. [8] and [25] used the
pupil center corneal reflection, from the IR lights which
are used to illuminate the eye regions from different di-
rections giving different image appearances, the corneal
reflection is built by subtracting these images. [22] and
[11] estimated the shape of the iris by fitting an ellipse to
infer the gaze. [15] and [10] estimate the gaze direction
from the 2D locations of the pupils and the corners in the
eye image. All the above methods simplify the anatomi-
cal structure of the eyeball and define the gaze direction as
the optical axis. [4] proposed an extended 3D eye model
based on the pupil and the corners to estimate the visual
axis but still require a high image resolution to detect the
corners accurately, in addition, they manually labeled the
pupils centers. The main limitation of these methods lies
in the direct link between their gaze estimation precision
and the accuracy of the eye’s key-points localization (pu-
pil, corners etc.) which requires a high image resolution
and small head pose changes.

1.2 Appearance-based method
Appearance-based methods learn the mapping from the
eye image appearances space to the gaze estimation
space. Many algorithms have been proposed. [1] trained a
neural network with 2k samples to learn the mapping func-
tion. [20] proposed a weighted linear interpolation to esti-
mate an unknown gaze point from 252 sparse samples. [23]
trained a semi-supervised Gaussian process on 80 samples
relatively sparse. [26] proposed support vector repressors
to achieve a high non-linear mapping . [19] proposed an
incremental learning strategy using an on-line sample ac-
quisition from a video stream updating the mapping func-
tion for a number of limited head pose configurations. [14]
introduced the adaptive linear regression for the learning
on a very sparse training set. The accuracy of these pre-
vious approaches is significantly affected in unconstrai-
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FIGURE 1 – Automatic gaze estimation based on our approach. We build a 3-channels global vector represented by the two
RGB eye images and the face depth information using the depth sensor multimodal data, we extract a set of patches and
project it through the forest represented here as the mapping function f(x) (the learned gaze sample clusters are defined
as the red centroid points). Each single tree casts votes for each patch (defined as the green points). By performing a non-
parametric clustering technique, a final estimation is calculated (represented as the green line, the red one defines the ground
truth).

ned environment with high head pose changes. Recently,
some methods aim to manage such trouble by conside-
ring gaze estimation and head pose as two independent
geometrical components, these approaches can be seen as
semi appearance-based methods. [13] proposed to sepa-
rate head pose component from the global gaze estimation
system. By performing an initial estimation under frontal
configuration assumption and a geometric compensation
with the head pose parameters, the final gaze estimation
is inferred. Using the same paradigm, [16] projected the
training gaze sample in frontal manifold using a fronta-
lization step based on the head pose parameters calcula-
ted using a specific 3D model fitting. These last two me-
thods solved the problem of head changes successfully but
still working under low user-camera distances. To cover all
the eye image appearance variability [24] recorded around
200k training samples and used a deeper strategy using a
convolutional neuronal network to learn a very robust map-
ping function achieving a high gaze estimation accuracy
but very constrained by an important computational time
making this method not real-time.

In this paper, we consider the high non-linear problem of
gaze estimation under head pose changes and large user-
sensor distances as a regression task. To learn such map-
ping robustly, we propose a novel approach that considers a
global gaze manifold instead of learning in frontal configu-
rations and geometrically correct the final estimation using
head pose parameters as usually done. We train an en-
semble of regression trees able to capture robustly gaze
information on an important 3-channels training samples
(channel(0),channel(1) defines the gray scale images rela-
tive to right and left eye respectively, channel(2) defines
the depth image of the face) organized as a set of patches
(where a patch defines a small group of nearby pixels). We
apply a channel-selection during the training to evaluate

the importance and involvement of each channel in the fi-
nal estimation. We define the gaze vector g as the vector
stretching the gravity center of the face and the gazed 3D
point. To provide a significant set of training data for lear-
ning the trees, we render a very important amount of gaze
samples using a 3D statistical morphable model with inte-
grating dynamic gaze model. We also build an important
gaze database recorded with the Microsoft Kinect sensor.
Rendered synthetic data are exclusively used for the lear-
ning and real data are used for both learning and testing.
Fig. 1 describes an overview of our automatic gaze estima-
tion system. The rest of the paper is organized as follows :
Sec. 2 describes our method in details. In Sec 3, we detail
how training data are generated. Sec. 4 describes the expe-
riments and evaluates the precision of our approach. Sec. 5
concludes the paper.

2 Our method
We use randomized regression trees to estimate the two
angles (θ, γ), which represent the horizontal and vertical
orientation of the gaze vector g, from the RGB and depth
cues combined on 3-channels patches. In Sec. 2.1, we pro-
vide some background on regression trees. In Sec. 2.2 and
Sec. 2.3 we detail the training and testing steps of our fo-
rests respectively. Sec.3 describes the generation of our
training RGB-D gaze samples.
For the next sections, we define also head pose parameters
asH (withH : [R|T ]).

2.1 Random regression forest
Recently, many applications in computer vision have used
Random Forest to achieve the mapping from complex input
spaces into discrete or continuous output spaces. Introdu-
ced by [2], randomized trees deal with different tasks such
as classification in [7, 12] and regression in [18, 5].
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FIGURE 2 – Data generation. (a) represents synthetic data rendering using the 3D morphable model of [17]. By introducing
some variabilities such as identity, head pose changes and lighting conditions, we integrated a dynamic gaze model (repre-
sented by two global textured spheres), we rendered the final RGB-D gaze training samples with the correspondent gaze
annotation illustrated in red line. (b) We performed the same strategy using real data grabbed from the multimodal Kinect
sensor by introducing the same previous variabilities. To obtain gaze annotation, a 2D moving point is gazed by the user (kno-
wing the rigid transformation sensor-screen, the stretching vector from user head gravity and the projection of the moving
point in the word coordinate can be calculated). These real data are principally used to evaluate accurately the performance
of the synthetic data in handling gaze estimation.

Regression forest is an ensemble of trees predictors which
splits the initial problem in two low complex problems in
a recursive way. At each node, a simple binary test is per-
formed, according to the result of the test, a data sample is
directed towards the left or the right child. The tests are se-
lected to achieve an optimal clustering. The terminal nodes
of the tree called leaves, store the estimation models ap-
proximating the best the desired output. To achieve high
generalization, the trees are trained in a decorrelated way
(with introducing randomness in both the training data pro-
vided for each tree and the set of binary tests).

2.2 Training
We supervised the training of each tree T in the forest
T = {Tt} using a set of annotated patches {Pi = (Ici , gi)}
randomly selected from the training data where :
– Ici represents the extracted visual features vector from a

given patch Pi, c defines the feature channel. We used 3
channels namely the two grayscale intensities extracted
from the two eye images and the depth values extracted
from the face.

– gi represents the output gaze vector represented with two
components (θ, γ).

Starting from the root, at each non-leaf node, we define a
simple binary test tx1,y1,x2,y2,c,τ :

{
1, if Ici (x1, y1)− Ici (x2, y2) ≤ τ
0, otherwise

where (Ici (x1, y1) − Ici (x2, y2)) represents the difference
of intensity between two locations (x1, y1) and (x2, y2)
in the channel c. Supervising the training consists in fin-
ding at each non-leaf node the optimal binary test t∗ that

maximizes the purity of the data clustering. Maximizing
the clustering purity is achieved by maximizing the infor-
mation gain defined as the differential entropy H of the set
of patches at parent node P minus the weighted sum of
the differential entropies computed at the children PL and
PR :

E = H(P)− (ωLH(PL) + ωRH(PR)) (1)

The weights ωj∈{R,L} are defined as the ratio of patches
reached to the parent and the right or left child respecti-
vely, i.e., |Pj∈{R,L}|

|P| . Assuming that the gaze vector g at
each node is a random variable with a multivariate Gaus-
sian distribution such as p(g) = N (g, ḡ,Σ), allows us to
rewrite Eq. 1 as follows :

E = log |Σ(P)| − (ωL log |Σ(PL)|+ ωR log |Σ(PR)|)|
(2)

The learning process finishes when the data reach a prede-
fined maximum value of the tree or when the number of
patches let down a threshold value yielding the creation of
the leaves. Each leaf l stores the mean of all the gaze vec-
tors which reached it with the corresponding covariance.

2.3 Testing
Given an unseen instance, we extract a set of patches from
the RGB eye regions and the face depth information after
a face detection step. Each patch is passed through all the
learned trees in the forest. Using the optimal stored binary
test, each tree processes the patch until reaching a leaf. The
gaze vector estimation according to a single tree is given
by the reached leaf l in terms of the stored distribution
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FIGURE 3 – (a) the mean error for the two gaze directions under frontal and head pose changes. (b) the mean error for the two
gaze directions under two distances from the sensor. (c) mean error over the two directions with and without using channel(2)

in frontal and head pose configurations respectively. (d) mean error of the two direction over head pose variation (yaw angle
variation) with different channels combination

p(g|l) = N (g, ḡ,Σ). The gaze vector estimation for a gi-
ven patch Pi over all the trees is calculated as follows :

p(g|Pi) =
1

|T |
∑

t

p
(
g|lt(Pi)

)
(3)

All the estimations corresponding to the extracted patches
are grouped in a set of votes. Before performing the
clustering of these votes, we discard the estimations
from the leaves with high variance considered as non-
informative. To locate the centroid of the cluster of the
votes, we perform 5 mean-shift iterations using a Gaussian
kernel.

3 Data generation
To provide a representative training dataset, we use two
types of data : synthetic and real data.

3.1 Synthetic data
In Computer vision community, machine learning tech-
niques are considered as a very elegant way to tackle pro-
blems. They demonstrated a great potential in terms of
efficiency and robustness. Nevertheless to achieve a high
generalization across unseen scenarios, these methods of-
ten require a very representative training data set. Given
that the building of high amount of labeled data is a very
tedious process, synthetic data represent a promising so-
lution. Indeed, the annotation is performed automatically

instead of manual labeling. [3] developed an iterative mo-
del based on Gabor-filters applied on an empty image
containing some seed points to render a fingerprint trai-
ning samples. [27] rendered iris image samples obtained
from a 2D polar projection of a cylindrical representation
of continuous fibers. [21] improved face authentication by
generating multiple virtual images using simple geometric
transformations. [18] used a motion capture strategy to re-
cord RGB and depth cues of the body part movements, by
varying body size and shape, scene position, camera po-
sition and mirroring the recorded data, they synthesize a
highly varied training allowing a robust body part pose es-
timation. [6] tackled the head pose estimation problem with
synthetic depth images by rendering an enormous amount
of training data using a 3D statistical morphable model.
In our method, we first generate our synthetic training gaze
samples by rendering the 3D morphable model proposed
by [17]. This model is built from around 200 scans of hu-
man faces. It contains a very high mesh density including
the face, frontal neck and the ears. The shape and texture of
the model is composed as a linear combination of 199 com-
ponents. They can be deformed according to the following
equation :

A = A0 +MAα (4)

where A can denote the generated texture or shape respec-
tively. A0 denotes the mean,M represents the basis com-
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FIGURE 4 – Comparison of our approach to semi appearance-based approach using exclusively synthetic data. Our approach
(in red) performs gaze estimation using RGB-D cues assuming a global gaze manifold(under head pose changes) in red. Semi
appearance-based approach (in green) performs gaze estimation assuming frontal configuration with a geometrical correction
using estimated head pose parameters. In blue : a semi appearance-based approach with ideal head pose parameters. (a) and
(b) : mean gaze error across the two directions for frontal and head pose configuration respectively.

ponents perturbed with parameters α.
Fig.2a shows an overall of the generation process. To in-
troduce face identity variation, we perturb the first 50 basis
components of the shape and texture by ±1.5 of the stan-
dard deviation of each mode. To render images in different
head pose configurations, we apply random rigid transfor-
mations on the model : the rotations spans±60 for yaw and
±40 for pitch and we translate the model along the z axis
within 200 cm range for scale variability. Furthermore, to
produce illumination variability, we generate light sources
with different intensities and directions. Unfortunately, the
basis components related to the shape and the texture of
this model do not monitor the gaze direction.
So, to integrate a dynamic gaze system to the model able
to generate different gaze direction instances, we decided
to delete all the vertices related to the eye regions. Two
spheres are placed as the eyeballs instead. We fix the dia-
meters to human average eyeball namely 25 mm. We use
different textures for the eyeballs to handle iris appearance
variability. Moreover to control eyelids movements resul-
ting from the gazing up and down, we introduce a linear
translation for each vertex surrounding the eye regions as
blendshapes. By defining the starting and the ending po-
sition in the global mesh, all the coefficients of the linear
translations can be calculated. Thanks to the topology of
the model, all these modifications keep the same behavior
under identity variation. To generate gaze samples, we ap-
ply random rotations to the eyeballs, the gaze information
angles can be easily computed knowing the location of the
eyeballs.

3.2 Real data
In the other hand, we recorded real gaze sample data using
Microsoft Kinect sensor. The database contains 17k RGB-

D images of 42 people (15 females and 27 males, 4 with
glasses and 38 without glasses) gazing different targets dis-
played on a screen. The subject performed 4 scenarios, ga-
zing with a fixed head at roughly d0 = 150 cm from the
sensor, gazing at same distance d0 under head pose changes
and the two others scenarios are performed at about d1 =
200 cm from the sensor. Knowing the Kinect intrinsic pa-
rameters and its rigid transformation to the screen, the dis-
played gaze points can be projected to the Kinect world
space. The gaze vector is represented as the vector stret-
ching the head gravity center (computed using face detec-
tion area) and the 3D gazed point. The acquisition was un-
der SXGA and VGA resolution for RGB and depth res-
pectively recorded at 15 fps. Fig.2b describes the acquisi-
tion process. First we grab RGB and depth information, by
using the known calibration between the two sensors, a 3D
textured mesh can be reconstructed. We show then, in ana-
logy with synthetic data, some real training data used for
both learning and testing.

4 Experimental results
In our experiments, we trained different forests either on
real data or synthetic data. The nature of the experiment
determines the training parameters.
We trained our forest Tgs using 400k RGB-D synthetic
gaze samples under several head pose changes. We ex-
tracted 15 patches from each sample giving 6M training
data. Face depth image size is fixed to (150 × 150), eye
RGB images to (80 × 70) and the size of each chan-
nel of the extracted patches for each channel is fixed to
(16 × 16). Some training and testing parameters are fixed
according to some empirical observations, e.g., the maxi-
mum depth to 18 and at each node we randomly generate
400 splitting candidates with 50 thresholds giving a total
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number of 20k binary tests. At testing, we extracted a total
of 30 patches from each gaze test sample with 20 regres-
sion trees. We tested our forest on 25 users from the real
images database discussed previously.

4.1 Robustness to head pose and distance va-
riations

We evaluate the gaze estimation accuracy using our trai-
ned forest Tgs under unconstrained environment. Fig. 3a
represents the global error of gaze estimation over 25 users
under frontal and head changes configurations. For each
user, a mean error across different gaze samples performed
under two distances is computed. In frontal case, the mean
error over all the users is less than 3◦ for the two directions
whereas the error is less than 6.5◦ for head pose changes
case. This difference in accuracy between the two configu-
rations is directly linked to the high eye image appearances
variability across head pose configuration making the trees
prediction less accurate. In Fig. 3b we report the error as
a function of distance from the sensor for a frontal confi-
guration. The experiments show a mean error of 2.9◦ and
3.1◦ for θ and γ respectively at 150 cm from the sensor. At
200cm, we notified a slightly higher errors, 4.8◦ and 5.0◦

for the two directions respectively. The difference in accu-
racy between the two distances is related to the RGB eye
images and face depth appearances which are significantly
variable depending on the distance from the sensor.

4.2 Channel selection importance
To evaluate the involvement of each channel (from the two
eye RGB images and face depth information) at testing
time, we realized experiments using the forest Tgs with
and without depth channel and compared gaze estimation
accuracy in both cases. Fig.3c illustrates the importance
of depth information in our approach especially in head
pose changes scenario. Gaze estimation errors are very
close with and without depth information in frontal scena-
rio whereas the error gap is approximatively 1.5◦ in head
pose changes configuration proving the importance of this
channel in such case. Depth information is more suitable to
encode geometric similarities between data samples which
represent the head pose information.
Fig.3d describes the influence of the two RGB channels
(corresponding to right and left eye) on gaze estimation
accuracy across different yaw angle values. These results
are expected since eye appearance is very sensitive to head
pose changes especially for yaw angle variation. For ins-
tance, positive values of yaw deform the left eye appea-
rance until a complete disappearance giving high estima-
tion errors for the two directions without the visible chan-
nel namely right eye (i, e., dotted lines in Fig 3d) and re-
ciprocally. Using our channel selection strategy introduced
on the forest learning, we can quantify the involvement of
each RGB channel in the final gaze estimation across head
pose changes.
Fig.6 shows some clusters with low variances captured by

the forest Tgs during training step. The process is achieved
with real training data.

4.3 Semi appearance-based versus
appearance-based approach

Fig.4 illustrates the robustness of learning gaze in a global
manifold (under head pose estimation). Instead of separa-
ting gaze and head pose as usually done, we trained two
supplementary forests {Tgf , TH} on exclusively synthetic
data as follows :
– Tgf : is the learned gaze estimation forest using only

RGB (eye images) cues under frontal configuration ex-
clusively. The forest is trained with the same parameters
as Tgs .

– TH : is the learned head pose estimation forest using
RGB-D cues (face depth and face RGB images). The
training parameters are fixed as done in [6] using 100k
training data.

Fig.4a illustrates the mean error of the gaze estimation
across the two direction under frontal scenario using dif-
ferent approaches. In red, our approach using the forest
(Tgs ), in green, frontal gaze estimation corrected with head
pose parameters using {(Tgf , TH)} and in blue, frontal
gaze estimation using Tgf corrected with an ideal head pose
(driven from the OpenGl camera calibration). We noticed
that errors are very close which is an expected result due to
the fact that head pose parameters are not involved in the
frontal scenario. Fig.4b describes the mean error in a head
pose scenario. Our gaze estimation approach presents a lo-
west error compared to the frontal gaze estimation correc-
ted with head pose parameters even if it is optimal. Correc-
ting gaze estimation with head pose in a geometrical way
makes the errors related to each component accumulated
unlike our approach which performs a direct mapping pro-
ducing an unique error for gaze estimation.

4.4 Learning with real data versus learning
with synthetic data

To evaluate the realism of our rendered synthetic data and
their ability to handle unconstrained gaze estimation pro-
blem, we trained a forest Tgr on 500k exclusively real trai-

FIGURE 6 – Visualizing some clusters captured during the
training step using only channel(2) with real and synthetic
data respectively.

– 32 –



0 5 10 15 20 25
user ID

4

6

8

10

12

14

16
er

ro
r (θ

 +
 γ

)/
2 (

de
gr

ee
s)

N
r
   =200k N

s
 =200k N

s
 =500k N

s
 =1M N

s
 =5M

,
(a)

-20       -15        -10        -5        0        5        10      15       20       25      

 20 
 
 15 
 
 10 
 
   5 
 
   0 
 
 -5 
 
-10 
 
-15 
 
-20 
 
-25   
  0° 

6° 

θ 

γ 

,
(b)

-20       -15        -10        -5        0        5        10      15       20       25      

 20 
 
 15 
 
 10 
 
   5 
 
   0 
 
 -5 
 
-10 
 
-15 
 
-20 
 
-25   
  0° 

6° 

θ 

γ 

,
(c)

FIGURE 5 – (a) gaze estimation error (over θ and γ and over 150cm and 200cm) under learning with real and synthetic data
(Nr andNr are the number of real and synthetic training data used respectively). (b) and (c) Gaze estimation error distribution
based real and synthetic learning respectively.

ning data under head pose changes extracted from the pre-
vious database (the other training parameters are kept fix
as in Tgs ). To achieve a comparative analysis, we trained in
the same way as Tgs different forest using different num-
ber of synthetic training data. The fact that learning forest
is a very computational time task, to learn different forest
in a acceptable time, we reduce the number of binary tests
generated at internal nodes to 1k instead of 20k which af-
fects considerably the estimation accuracy but yields suffi-
ciently good results to compare different scenarios. Fig. 5a
describes gaze estimation errors across different user un-
der real and synthetic learning. A first observation can be
driven by the figure, learning with the same number of trai-
ning data in real and synthetic case does not perform the
same accuracy which can be explained by the difference
in the realism between real and synthetic data. During test,
extracted patches appearance from a testing user is more
closer to the gaze clusters appearances encoded using the
forest Tgr . Increasing the number of synthetic training data
make Tgs increasingly close to Tgr . This can be explai-
ned by enhancing the generalization ability across unseen
scenarios with more training data (We evaluated the factor
between real and synthetic training producing approxima-
tively same accuracy to 1/9).
In Fig. 5b and Fig. 5c we illustrate gaze estimation error
distribution over all 5 best testing users using Tgr and Tgs
respectively. We can notice the importance of the error un-
der synthetic learning in Fig. 5c for γ less than−20◦ values
resulting from the eyes closure when gazing down.

5 conclusion
In this paper, we presented a robust approach to handle
gaze estimation problem in unconstrained environment
using an ensemble of regression trees grouped in a single
forest with high ability of generalization. To ensure the ro-
bustness, we include both RGB and depth cues as input
during learning assuming a global gaze samples manifold
under head pose variation. To enhance the generalization,
we render an important amount of training data using a

3D morphable model with an integrated dynamic gaze mo-
del. We also, build a database with real images to evaluate
the accuracy of the gaze estimation in real scenario with
accuracy. Different experiments scenarios demonstrate that
our approach present a great potential regarding state-of-
the-art methods.
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