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Résumé

Dans cet article nous proposons une notion de bisimula-
tion alternée des capacités stratégiques avec information im-
parfaite. La bisimulation préserve les formules d’ATL pour
les variantes objective et subjective de la sémantique basée
sur états avec information imparfaite, qui est couramment
utilisé dans la modélisation et la vérification des systèmes
multi-agents. De plus, nous appliquons ce résultat théorique
à la vérification de la résistance à la coercition dans le sys-
tème de vote dit three-ballot, un protocole qui n’utilise pas la
cryptographie. En particulier, nous démontrons que des sim-
plifications naturelles du modèle initial du protocole sont en
fait des bisimulations du modèle original, et donc elles satis-
font les mêmes propriétés dans ATL, y compris la résistance
à la coercition. Ces simplifications permettent la terminai-
son de la vérification par l’outil model checker MCMAS sur
des modèles avec un plus grand nombre d’électeurs et de
candidats par rapport au modèle initial. Cet article a été ac-
cepté à AAMAS2017.

Abstract

We propose a notion of alternating bisimulation for
strategic abilities under imperfect information. The bisim-
ulation preserves formulas of ATL for both the objective
and subjective variants of the state-based semantics with
imperfect information, which are commonly used in the
modeling and verification of multi-agent systems. Further-
more, we apply the theoretical result to the verification of
coercion-resistance in the three-ballot voting system, a vot-
ing protocol that does not use cryptography. In particular,
we show that natural simplifications of an initial model of
the protocol are in fact bisimulations of the original model,
and therefore satisfy the same ATL properties, including
coercion-resistance. These simplifications allow the model-
checking tool MCMAS to terminate on models with a larger
number of voters and candidates, compared with the ini-

tial model. This paper has been accepted for presentation
at AAMAS2017.

1 Introduction

The realm of formal languages for expressing strategic
abilities of rational agents has witnessed a steady growth in
recent years [8, 9, 24]. Among the most significant contri-
butions we mention alternating-time temporal logic [3],
strategy logic [13, 33], coalition logic [38]. These lan-
guages include modal operators, indexed to coalitions A ⊆
Ag of agents, to express that the agents in A have a strategy
to enforce a certain outcome, regardless of the behavior of
the agents in Ag∖ A. These syntactical features allow us to
express winning conditions in multi-player games, notions
of equilibrium (e.g. Nash), strategy-proofness [13, 34].

However, if these logics for strategies are to be applied
to the specification and verification of multi-agent systems
[22, 28, 31], they need to be coupled with efficient model
checking techniques. Unfortunately, while in contexts of
perfect information we benefit from tractable algorithms
for model checking [3], the situation is rather different
once we consider imperfect information. In contexts of im-
perfect information the complexity of the verification task
ranges between ∆P

2 -completeness to undecidability, depen-
ding on whether we allow for perfect recall [20, 26]. In this
setting it is crucial to develop complementary model che-
cking techniques, in order to make the problem amenable.

In this line of research abstractions have proved to be a
valuable tool for efficient verification [14, 15]. In this ap-
proach the concrete system S to be verified is abstracted
into a “simpler” model S A, which typically contains “less”
transitions and therefore is “easier” to check in principle.



Then, the verification result is transferred from the abstract
S A to the concrete S by virtue of some preservation re-
sult. Normally, preservation is guaranteed by proving that
the abstract S A is (bi)similar to S . (Bi)simulations are a
powerful tool to analyze the expressiveness of modal lan-
guages, starting with van Benthem’s result on modal logic
as the bisimulation-invariant fragment of first-order logic
[6]. However, (bi)simulations are a lot less understood in
logics for strategies, where they have been studied mostly
for contexts of perfect information [4, 23, 2].

In this paper we advance the state-of-the-art by intro-
ducing (bi)simulations for alternating-time temporal logic
(ATL) under imperfect information. We prove that these
(bi)simulations preserve the interpretation of formulas in
ATL, when interpreted with imperfect information and im-
perfect recall, for both the objective and subjective seman-
tics [8, 9]. Most interestingly for MAS verification, we ap-
ply these (bi)simulations to the abstraction of a class of
electronic voting protocols without encryption.

Electronic voting has increasingly been considered as a
robust alternative to paper-based voting due to a number
of advantages it offers : accessibility, availability, voter tur-
nout, less expensive and easier to use than paper voting,
faster and more accurate ballot counting and results. Howe-
ver, electronic voting poses a number of challenges, some
of which are common also to paper voting, but in a more
technological setting : resistance and resilience to coercion
and other types of fraud, secrecy, anonymity, verifiability,
democracy (the right to vote at most once), accountability.
Other issues are specific to electronic voting : access to in-
ternet, privatization, as well as public understanding and
trust [41].

An increasing amount of research has focused recently
on the verification of many of these properties for various
types of voting protocols [5, 16]. The frameworks used for
modeling and verifying security properties of voting proto-
cols include, to mention only a few, process calculi such as
the applied π-calculus or CSP [18, 25, 43], rewriting-based
approaches [11, 19, 7], approaches based on flat transition
systems etc.

Here we develop a verification procedure for voting pro-
tocols that is based on a multi-agent logics approach. The
main advantage of an approach based on multi-agent logics
is the provision of a unified specification language for a va-
riety of properties. A simple example is the variety of en-
glish statements of (non-probabilistic) coercion resistance
that is around in the literature, which are usually implemen-
ted as behavioral equivalence properties involving some
process algebraic model of the system [16]. However such
approaches do not make it clear what is the system model
and what is the property to be verified on the system. Multi-
agent logics allow a clear separation of these two, as well
as a wider variety of properties, involving the existence of
attacker strategies. Our results, while only preliminary and

adressing a simplified version of the Three Ballot protocol
[40], allow the verification of systems with an increasing
number of voters and candidates when compared with the
approach based on process calculi from [35, 36].

Scheme of the Paper. In Section 2 we introduce the
syntax and semantics of ATL interpreted under imperfect
information and imperfect recall. In Section 3 we define
(bi)simulation relations in this setting and prove that they
preserve the interpretation of formulas in ATL. Then, in
Section 4 we present the three-ballot voting protocol and
formalize it as a game structure. In particular, we provide
two abstractions of the three-ballot voting protocol and
show that all systems are indeed bisimilar. Finally, in Sec-
tion 5 we evaluate the gains in verification time and re-
sources of model checking these abstractions in compari-
son to the original model. We conclude in Section 6 by dis-
cussing related works and by pointing to future directions
of research.

This paper has been accepted for presentation at the
16th International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS2017).

2 The Formal Setting

In this section we introduce the syntax of ATL and its
semantics defined on concurrent games structures with im-
perfect information. The following definitions and notation
are taken from [20]. Concurrent game structures have been
introduced in [3] in a perfect information setting. Here we
consider their version for contexts of imperfect informa-
tion [27].

Definition 1 A concurrent game structure with imperfect
information, or iCGS, is a tuple G = ⟨Ag,AP,S , s0,
{∼i}i∈Ag,Act,d,→, π⟩, where

— Ag is a nonempty and finite set of agents. Subsets
A ⊆ Ag of agents are called groups.

— S is a non-empty set of states and s0 ∈ S is the initial
state of G.

— For each agent i ∈ Ag, ∼i is an equivalence relation
on S , called the indistinguishability relation for i.

— Act is a finite non-empty set of actions. A tuple a⃗ =
(ai)i∈Ag ∈ ActAg is called a joint action.

— d ∶ Ag × S → (2Act ∖ {∅}) is the protocol function.
For every i ∈ Ag, d(i) returns the set of actions avai-
lable to agent i at each state. Protocol d satisfies the
property that, for all states s, s′ ∈ S and any agent
i, s ∼i s′ implies d(i, s) = d(i, s′), that is, the same
actions are available to agent i in indistinguishable
states.

— →⊆ S × ActAg × S is the transition relation such that,
for every state s ∈ S and joint action a⃗ ∈ ActAg. We

write s
a⃗Ð→ r for (s, a⃗, r) ∈→. Moreover, s

a⃗Ð→ r only if
ai ∈ d(i, s) for every agent i ∈ Ag.



— AP is a set of atomic propositions and π ∶ S → 2AP

is the state-labeling function.

By Def. 1 in a given state s, each agent i ∈ Ag can per-
form the enabled actions in d(i, s). A joint action a⃗ fires a
transition from state s to some state s′ only if each ai is en-
abled for agent i in s. Further, each agent i is equipped with
an indistinguishability relation ∼i, with s ∼i s′ meaning that
i cannot tell state s from state s′, i.e., agent i possesses the
same information in the two states. In particular, the same
actions are enabled in indistinguishable states.

Given an iCGS G as above, a run is a finite or infinite
sequence λ = s0a⃗0s1 . . . in ((S ⋅ ActAg)∗ ⋅ S ) ∪ (S ⋅ ActAg)ω

such that for every j ⩾ 0, s j
a⃗ jÐ→ s j+1. Given a run λ =

s0a⃗0s1 . . . and j ⩾ 0, λ[ j] denotes the j+ 1-th state s j in the
sequence. For a group A ⊆ Ag of agents, a joint A-action
denotes a tuple a⃗A = (ai)i∈A ∈ ActA of actions, one for each
agent in A. For groups A ⊆ B ⊆ Ag of agents, a joint A-
action a⃗A is extended by a joint B-action b⃗B, denoted a⃗A ⊑
b⃗B, if for every i ∈ A, ai = bi. Also, a joint A-action a⃗A is
enabled at state s ∈ S if for each agent i ∈ A, (aA)i ∈ d(i, s).

We now introduce a notion of strategy adapted to iCGS
with imperfect information [27].

Definition 2 A (uniform) strategy for an agent i ∈ Ag is a
function σ ∶ S → Act that is compatible with d and ∼i, i.e.,

— for every state s ∈ S , σ(s) ∈ d(i, s) ;
— for all states s, r ∈ S , s ∼i r implies σ(s) = σ(r).

By Def. 2 a strategy in an iCGS has to be uniform in the
sense that in indistinguishable states it must return the same
action. Such strategies are also known as observational in
the literature on game theory. Note that in this paper we
use memoryless strategies, whereby only the current state
determines the action to perform. This choice is dictated by
the application in hand, namely voting protocols, in which
each agent’s memory is encoded in the agent’s state 1. Per-
fect recall strategies with imperfect information can be de-
fined similarly, as memoryless strategies on tree unfoldings
of iCGS. We leave this extension for future work.

A strategy for a group A of agents is a family σA = {σa ∣
a ∈ A} of strategies, one for each agent in A. Given groups
A ⊆ B ⊆ Ag, a strategy σA for group A, a state s ∈ S , and
a joint B-action b⃗B ∈ ActB that is enabled at s, we say that
b⃗B is compatible with σA (in s) whenever σA(s) ⊑ b⃗B. For

states s, r ∈ S and strategy σA, we denote s
σA(s)ÐÐÐ→ r if s

a⃗Ð→ r
for some joint action a⃗ ∈ ActAg that is compatible with σA.

We define two notions of outcomes of strategyσA at state
s, corresponding to the objective and subjective interpreta-
tion of ATL operators. Fix a state s and a strategy σA for
group A.

1. Therefore memoryless strategies already encode the agent’s me-
mory of all her past observations.

1. The set of objective outcomes of σA at s is defined as

outGob j(s, σA) = {λ ∈ Run(G) ∣ ∀ j ⩾ 0, λ[ j] σA(λ[ j])ÐÐÐÐ→
λ[ j + 1]}.

2. The set of subjective outcomes of σA at s is defined
as outGsub j(s, σA) = ⋃

i∈A,s′∼i s
outGob j(s′, σA).

Definition 3 The set of ATL formulas ϕ is defined by the
following BNF :

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ→ ϕ ∣ ⟪A⟫Xϕ ∣ ⟪A⟫ϕUϕ ∣ ⟪A⟫ϕRϕ

where p ∈ AP and A ⊆ Ag.

The ATL operator ⟪A⟫ intuitively means that ‘the agents
in group A have a (collective) strategy to achieve . . . ’,
where the goals are LTL formulas built by using operators
‘next’ X, ‘until’ U, and ‘release’ R. Note that the ’relea-
se’ operator R cannot be defined in ATL with imperfect
information by using ’until’ U and ’globally’ G, as it is the
case in perfect information contexts [30], so we include it
for completeness. We define A-formulas as the formulas in
ATL in which A is the only group appearing in ATL moda-
lities.

Traditionally, ATL under imperfect information has been
given either state-based or history-based semantics, and se-
veral variations have been considered on the interpretation
of strategy operators. Here we present both the objective
and subjective variants of the state-based semantics with
imperfect information and imperfect recall.

Definition 4 Given an iCGS G, an ATL formula ϕ, the sub-
jective (resp. objective) semantics of ϕ at state s, denoted
(G, s)⊧xϕ for x= sub j (resp. x=ob j), is defined recursively
as follows :

(G, s) ⊧x p iff p ∈ π(s)
(G, s) ⊧x ¬ϕ iff (G, s) /⊧x ϕ

(G, s) ⊧x ϕ ∧ ϕ′ iff (G, s) ⊧x ϕ and (G, s)⊧xϕ
′

(G, s) ⊧x ⟪A⟫Xϕ iff ∃σA ∀λ ∈ outGx (s,σA), (G, λ[1])⊧xϕ

(G, s) ⊧x ⟪A⟫ϕUϕ′ iff ∃σA ∀λ ∈ outGx (s,σA),∃ j ⩾ 0 with

(G, λ[ j]) ⊧x ϕ
′ and ∀0 ⩽ k < j, (G, λ[k]) ⊧x ϕ

(G, s) ⊧x ⟪A⟫ϕRϕ′ iff ∃σA ∀λ ∈ outGx (s,σA), either ∀ j⩾0,
(G, λ[ j]) ⊧x ϕ, or∃k ⩾ 0 with (G, λ[k])⊧xϕ

′

and ∀0 ⩽ l ⩽ k, (G, λ[l]) ⊧x ϕ

Remark 5 The knowledge operator Ki can be appended to
the syntax of ATL with the following semantics :

(G, s) ⊧x Kiϕ iff ∀s′ ∈ S , s′ ∼i s implies (G, s′) ⊧x ϕ

By considering the subjective interpretation of ATL, this
operator can be derived : (G, s) ⊧sub j Kiϕ iff (G, s) ⊧sub j

⟪i⟫ϕUϕ. There exists no such definition for the knowledge
operator in ATL with the objective semantics.



3 Simulations and Bisimulations

In this section we define simulation and bisimulation re-
lations on iCGS with imperfect information and perfect re-
call. The main result we prove is that bisimulations pre-
serve the interpretation of formulas in ATL. We start by
introducing relevant notions that will be used in the rest of
the paper.

A partial strategy for agent i ∈ Ag is a partial function
σ ∶ S → Act such that for each s1, s2 ∈ S , if s1 ∼i s2 then
σ(s1) = σ(s2). We denote the domain of the partial stra-
tegy σ as dom(σ). Given a group A ⊆ Ag, a partial strategy
profile for A ⊆ Ag is a tuple (σi)i∈A of partial strategies, one
for each agent i ∈ A. The set of partial strategy profiles for A
is denoted PS trA. Given a set U ⊆ S of states and a group
A ⊆ Ag, we denote PS trA(U) the set of partial strategies
whose domain is U :

PS trA(U) = {(σi)i∈A ∈ PS trA ∣ dom(σi) = U for all i ∈ A}

Given a group A ⊆ Ag of agents, the collective know-
ledge relation ∼E

A is defined as ⋃i∈A ∼i, while the common
knowledge relation ∼C

A is the transitive closure (⋃i∈A ∼i)+
of ∼E

A . Then, EGA (q) = {q′ ∈ S ∣ q′ ∼E
A q} and CGA (q) =

{q′ ∈ S ∣ q′ ∼C
A q} are respectively the collective and com-

mon knowledge neighbourhoods of state q for group A in
the iCGS G.

Definition 6 (Simulation) Given two iCGS G = ⟨Ag,
AP,S , s0,{∼i}i∈Ag,Act,d,→, π⟩ and G′ = ⟨Ag,AP,S ′, s′0,
{∼′i}i∈Ag,Act′,d′,→′, π′⟩ sharing the set of agents Ag and
the set of atoms AP, and a group A ⊆ Ag of agents, a rela-
tion ⇛A⊆ S × S ′ is a simulation for A iff q ⇛A q′ implies
that

1. π(q) = π′(q′) ;

2. For every i ∈ A and r′ ∈ S ′, if q′ ∼′i r′ then for some
r ∈ S we have that q ∼i r and r ⇛A r′.

3. By denoting CA(q) = CGA (q) and C′
A(q) = CG

′

A (q),
there exists a mapping S T = S TCA(q),C′A(q′) with
S T ∶ PS trA(CA(q)) → PS trA(C′

A(q′)) such that for
any two states r ∈ CA(q), r′ ∈ C′

A(q′), if r ⇛A r′ then
the following two properties hold :

(a) For every partial strategy σA ∈ PS trA(CA(q))
and state s′ ∈ S ′, if r′

S T(σA)(r′)ÐÐÐÐÐÐ→ s′ then there

exists some state s such that r
σA(r)ÐÐÐ→ s and s ⇛A

s′.

(b) S TCA(q),C′A(q′) = S TCA(r),C′A(r′).

A relation ⇚⇛A is a bisimulation iff both ⇛A and ⇛−1
A =

{(q′,q) ∣ q ⇛A q′} are simulations.
Intuitively, by Def. 6 state q′ simulates q, i.e., q ⇛A q′

implies that (1) q and q′ agree on the interpretation of
atoms ; (2) q simulates the epistemic transitions from q′ ;

Figure 1 – Three-ballot showing a vote for Bob Smith

and (3) for every partial strategy σA, defined on the com-
mon knowledge neighborhood CA(q), we are able to find
some partial strategy S T(σA) (the same for all states in

CA(q)) such that the transition relations
S T(σA)ÐÐÐÐ→ and

σAÐ→
commute with the simulation relation ⇛A.

Remark 7 The problem of checking for the existence of a
bisimulation between two iCGS, for some set of agents A is
in PSPACE.

In order to prove that bisimilar states satisfy the same
formulas in ATL, we prove the following auxiliary result.

Proposition 8 If q ⇛A q′ then for every uniform strategy
σA, there exists a uniform strategy σ′A such that

(*) For every run λ′ ∈ outG
′

x (q′, σ′A), for x ∈
{sub j,ob j}, there exists an infinite run λ ∈
outGx (q, σA) such that λ(i)⇛A λ

′(i) for every i ⩾ 0.

By using Proposition 8 we are finally able to prove the
main preservation result of this paper.

Theorem 9 Given two iCGS G and G′ and states q ∈ S ,
q′ ∈ S ′, suppose that q ⇚⇛A q′. Then for every A-formula
ϕ,

(G,q) ⊧ ϕ if and only if (G′,q′) ⊧ ϕ

By Theorem 9 we obtain that bisimilar states preserve
the interpretation of ATL formulas. More precisely, if states
q and q′ are A-bisimilar then they satisfy the same A-
formulas.

4 Three-Ballot Voting Protocol

ThreeBallot [40, 39] is a voting protocol that strives to
achieve some desirable properties, such as anonymity and
verifiability of voting, without the use of cryptography. The
protocol proceeds as follows. Each voter identifies herself
at the poll site, and gets a paper “multi-ballot” to vote with.
The multi-ballot consists of three vertical ballots – identical
except for ID numbers at the bottom, see Figure 1 (presen-
ted after [40]). The voter fills in the multi-ballot, separates
the three parts and casts them in the ballot box. To cast
a vote for a candidate, one must mark exactly two (arbi-
trary) bubbles on the row of the candidate. To not vote for



a candidate, one must mark exactly one of the bubbles on
the candidate’s row (again, arbitrary one). In all the other
cases the vote is invalid. The ballots are tallied by counting
the number of bubbles marked for each candidate, and then
subtracting the number of voters from the count.

While voting, the voter also receives a copy of one of her
three ballots, and she can take it home. After the election
closes, all the ballots are scanned and published on the web
bulletin board. In consequence, the voter can check if her
receipt matches a ballot listed on the bulletin board. If no
ballot matches the receipt, the voter can file a protest.

Since ThreeBallot is not a cryptographic protocol, it
does not heavily rely on computers and counting can be
done directly. Moreover, voters have no responsibility to
ensure the integrity of cryptographic keys, and the security
process in their vote is essentially the same as with tradi-
tional ballots.

Properties. ThreeBallot was proposed to provide several
properties that reduce the possibility of electoral fraud.

Anonymity (cf. e.g. [35]) requires that no agent should
ever know how another voter voted, except in cases when
it is inevitable, such as when all the voters voted for the
same candidate. Anonymity is important because it limits
the opportunities of coercion and vote-buying. Coercion-
resistance requires that the voter cannot reveal the value of
her vote beyond doubt, even if she fully cooperates with the
coercer. As a consequence, the coercer has no way of de-
ciding whether to execute his threat (or, dually, pay for the
vote). A preliminary formalization of coercion-resistance
and receipt-freeness in ATL has been presented in [44].

Finally, end-to-end voter verifiability [42, 41] provides a
way to verify the outcome of the election by allowing vo-
ters to audit the information published by the system. Ty-
pically, the focus is on individual verifiability : each voter
should be able check if her vote has been taken into account
and has not been altered.

4.1 iCGS Model

We present here three iCGS models of the Three-Ballot
Voting system. All these models have been specified in
ISPL (Interpreted System Programming Language), the in-
put language of MCMAS. Several aspects of the voting
system have not been modeled : the ID of each ribbon, the
copy of the ribbon which is given back to each voter after
casting his/her ballot, the possibility for voters to verify the
presence of the ribbon they are given back after voting. We
model a single attacker who is also a voter and, as such,
must obey the voting protocol and does not interact in any
particular way with the other agents.

In the iCGS below, each agent is represented by means
of its local variables and their evolution. The vote collector
and bulletin board (BB) are modeled by the Environment
agent (call it Env). This agent contains local variables mo-

deling the fact that the voting process is open and the values
of ribbons on the BB. These variables are observable by all
voters, including the attacker. Env also contains private va-
riables used for collecting ribbons and disposes of the three
actions Acte = {stop, collect,nop} for waiting closing elec-
tions, collecting votes and, finally, looping after the end of
the publication of the BB.

Elections are closed immediately after the voting starts.
This peculiarity of our models avoids us dealing with a
vote collector which never stops the voting process, which
may lead to the vacuous falsity of the formulas checked un-
less some fairness property is enforced – and, for the time
being, fairness is not handled by our alternating bisimula-
tion.

The agents representing voters have each a private va-
riable representing their choice for a candidate. Then they
share three "ballot" variables with Env. These variables
represent the ribbons that are created by the "voting ma-
chine". Casting the vote is modeled by creating the three
ribbons, compatible with the choice of each candidate.
Votes are already cast in the initial state. Being visible by
Env, the values of the three ribbons are copied by Env on
the (variables represented on the) BB in a random order.
Each agent has two actions : vote, by which the voter casts
his/her vote, and nop, a non-voting or idle action. vote is
enabled only in the initial state, nope is enabled everyw-
here. All agent variables are never modified during the vo-
ting process.

In the first model, denoted Gtot, for each agent choice, all
configurations of the three ribbons which are compatible
with the agent’s choice may occur. The communication bet-
ween each agent and Env is entirely at Env’s charge, who
has direct access to agents’ ribbons and copies them onto
the BB. Copying is also done at random : Env chooses a
non-copied ribbon from a voter who has cast his vote (boo-
lean variables are defined to help Env identify these situa-
tions) and copies it onto a free position on the BB.

With the second model, denoted Glex, we model a vo-
ting machine which sorts, according to the lexicographic
order, the three ribbons produced for the agent’s choice,
and places the largest one in the first "ballot" variable of
the voter, the second largest in the second variable, and the
smallest in the third variable. Hence, for each choice of an
agent, there are still several configurations of ribbons that
are produced, but we no longer produce all permutations of
a configuration, but a single representative of that permuta-
tion.

Finally, we modify Glex into a third model, in which Env
no longer copies ribbons on the BB, but rather counts the
votes for each candidate by peeping at the "ballot" variables
of each voter. This model is denoted Gcount.

Formally, in the case of Gtot for n voters and
nc candidates, each global state has the form
(vopen, pub, (ribb`)1⩽`⩽3n,



(chi, vi)1⩽i⩽n, (si j,ai j)1⩽i⩽n,1⩽ j⩽3) where :
1. The local state for voter i is

(vopen, pub, ribb1, ribb2, ...ribb3n, vi, si1, si2, si3)
2. Boolean vopen holds true when the vote is opened

and pub signals that all ribbons of agents that have
voted are published on the BB.

3. Integer 1 ⩽ chi ⩽ nc specifies the choice of agent i.
4. Boolean vi (1 ⩽ i ⩽ n) tells whether agent i has voted.
5. Integer variables si j (1 ⩽ j ⩽ 3) represent the "bal-

lots" of voter i. They are shared between each agent
and Env, who copies them onto the BB.

6. Integer variables ribb` (1 ⩽ ` ⩽ 3n) represent the BB.
7. Booleans ai j are used by Env for remembering which

ballots si j have been copied on the BB.
Initial states are such that vopen = true, vi = f alse for

all i ⩽ n, variables ribb` are undefined value �, ai j = f alse
and, for variables si j we have the following rules mode-
ling the creation of a triple of ribbons compatible with a
choice of a candidate : for each voter i, let b jk = bi

jk be the
bit representing the bubble on the line corresponding with
candidate k of the jth ballot of i’s vote, as given by chi. A
tuple (b jk)1⩽ j⩽3,1⩽k⩽nc is compatible with choice chi if the
following properties hold :

1. if k = chi then ∃p ⩽ 3 s.t. bpk = 0 and ∀p′ ≠ p,
bp′k = 1

2. if k ≠ chi then ∃p ⩽ 3 s.t. bpk = 1 and ∀p′ ≠ p,
bp′k = 0

Denote B(chi) the set of bit tuples (b jk)1⩽ j⩽3,1⩽k⩽nc com-
patible with chi. Denote further by R(chi) the transfor-
mation of these bit tuples into integer triples modeling
the valid ballots compatible with the choice chi, R(chi) =
{(st j)1⩽ j⩽3 ∣ st j = ∑1⩽k⩽nc b jk ⋅ 2k−1, (b jk)1⩽ j⩽3,1⩽k⩽nc ∈
B(chi)}. (For instance, valid triples of integers compatible
with a voting intention for candidate 2 and nc = 2 are all
permutations of (3,2,0) plus all permutations of (2,2,1).)

Then (si j)1⩽ j⩽3 ∈ R(chi) for each 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.
Transitions are then of the form :

(vopen, pub, (ribb`)1⩽`⩽3n,

(chi, vi)1⩽i⩽n, (si j,ai j)1⩽i⩽n,1⩽ j⩽3)
(ae,a1,a2,...,an)ÐÐÐÐÐÐÐ→ (vopen′, pub′,

(ribb′`)1⩽`⩽3n, (ch′i , v
′
i)1⩽i⩽n, (s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3) with :

1. vopen′ = f alse if (ae = stop or vopen = f alse) and
vopen′ = true otherwise. Action ae = stop is the only
available action for Env if vopen = true.

2. For ai = vote, v′i = true, and for ai = nop, v′i = vi.
3. For ae = collect and ai = nop for all i we have the

following rules :
(a) There exists some subset of pairs A ⊆ {1, ..,n} ×

{1, ..,3} with a′i j = ai j = true for all (i, j) ∈ A.
(b) There exists (i0, j0) /∈ A with a′i0, j0 = true,

ai0, j0 = f alse and for all (i, j) /∈ A ∪ {(i0, j0)},
a′i j = f alse.

(c) There exists some B ⊆ {1, ..,3n} with card(B) =
card(A), ribb′` = ribb` for all ` ∈ B.

(d) There exists some k /∈ B, 1 ⩽ k ⩽ 3n with ribbk =
�, ribb′k = si0, j0 and ribb′` = � for all ` /∈ B ∪ {k}.

4. Action ae = nop can only be executed when, for each
i, either all ai j = true or vi = f alse, and its effect is
to modify only pub′ = true, all the other variables
remaining unchanged.

In Glex, transitions are identical to the above, the only dif-
ference being in the initial states, more specifically in the
configuration of variables si j. These are instantiated such
that (si j)1⩽ j⩽3 ∈ {max(Perm((st j)1⩽ j⩽3)) ∣ (st j)1⩽ j⩽3 ∈
Rchi} for each 1 ⩽ i ⩽ n, the maximum being considered
under the lexicographic order and Perm((st j)1⩽ j⩽3) stands
for the set of all permutations of the tuple (st j)1⩽ j⩽3.

Finally, the iCGS Gcount is similar with Glex but all va-
riables ribb` are replaced with nc variables (cok)1⩽k⩽nc. The
local state for agent i is then (vopen, pub, co1, . . . , conc,
vi, si1, si2, si3). The description of transitions is then the
same, excepting the case for ae = collect and items 3.(c)-
3.(d) above (defining the updates of variables ribb`), which
are replaced by the following :

3.(c’) For each 1 ⩽ k ⩽ nc, if a′i j ≠ ai j then co′k = cok +
bi jk, where bi jk is the k-th least significant bit of si j,
otherwise co′k = cok.

4.2 Bisimulations for Gtot, Glex and Gcount

The three models defined in the previous section seem
naturally related w.r.t. some properties – in particular those
related with the attacker modifying the outcome of the vote
or breaking the anonymity. The interest in simplifying the
model is that checking the coercion resistance property can
be done faster and with less memory on Gcount than on Glex,
which, on its turn, requires less time and memory than Gtot,
as we will see in the last section. In this section we show
that the three models are bisimilar for the attacker, for the
set of atomic propositions that refer only to choices of the
agents. The fact which formalizes the "natural relation"
between them and allows us to check a coercion resistance
property on the simplest one and then generalizing the re-
sults on the two others, in particular on the largest model.
Note that this bisimulation works because the properties do
not refer to the status of the BB. For instance, these bisi-
mulations would not be useful for simplifying systems for
verifiability [18].

Formally, for each choice for an agent i to vote for a
candidate j, we utilize an atomic proposition pchi= j, which
holds true only in those states in which chi = j. Then
if we denote the attacker att = n and AP = {pchi= j ∣
1 ⩽ i ⩽ n,1 ⩽ j ⩽ nc}, the following relation is
an {att}-bisimulation over AP between Gtot and Glex :
(vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n,



(si j,ai j)1⩽i⩽n,1⩽ j⩽3)⇚⇛1
{att} (vopen′, pub′, (ribb′`)1⩽`⩽3n,

(ch′i , v
′
i)1⩽i⩽n, (s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3) iff the following hold :

1. vopen = vopen′, pub = pub′, vi = v′i , chi = chi for all
1 ⩽ i ⩽ n and ribb` = ribb′` for all 1 ⩽ ` ⩽ 3n.

2. For each 1 ⩽ i ⩽ n, if we denote b jk the kth least
significant bit of si j and b′jk the kth bit of s′i j, then
both (b jk)1⩽ j⩽3,1⩽k⩽nc, (b′jk)1⩽ j⩽3,1⩽k⩽nc ∈ B(chi).

3. Denote ρi the S 3-permutation of (si1, si2, si3) into
(s′i1,
s′i2, s

′
i3), i.e. si j = s′iρi( j). Also when si j = s′i j = � we

put ρi = id{1,2,3}. Then ai j = a′iρi( j) for all i, j.

Stated differently, the 3rd item above says that (b′jk) is
the largest, in lexicographic order, among all tuples in Bchi

which are permutations of (b jk).
For Glex and Gcount, we may consider

the following {att}-bisimulation over AP :
(vopen, pub, (ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,
(si j,ai j)1⩽i⩽n,1⩽ j⩽3)⇚⇛2

{att} (vopen′, pub′, (cok)1⩽k⩽nc,

(ch′i , v
′
i)1⩽i⩽n, (s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3) where :

1. vopen = vopen′, pub = pub′, vi = v′i , chi = chi, si j =
si j and ai j = a′i j for all 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.

2. For each 1 ⩽ ` ⩽ 3n and 1 ⩽ k ⩽ nc, if we denote b`k
the kth least significant bit on the ribbon ribb`, then :

cok =∑{b`k ∣ ribb` ≠ �,1 ⩽ ` ⩽ 3n}

To prove that these relations are indeed alternating bi-
simulations, note that the condition 1 is trivially satisfied
as whenever q ⇚⇛ι

{att} q′ (ι = 1,2), we must have that
(chi = j) ∈ q iff (chi = j) ∈ q′.

To prove properties 2 and 2-dual for ⇚⇛1
{att}, take states

q, r in Gtot and r ∈ Glex with q ⇚⇛1
{att} q′, q ∼att r. Then

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3)
q′ = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3)

r = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3)

with q,q′ related by the definition of ⇚⇛1
{att} above and

chatt = chatt, satt, j = s′att, j and aatt, j = a′att, j for all 1 ⩽ j ⩽ 3.
Put then

r′ = (vopen, pub, (ribb`)1⩽`⩽3n, (ch′i , v
′
i)1⩽i⩽n−1, (chatt, vatt),

(s′i j,a
′
i j)1⩽i⩽n−1,1⩽ j⩽3, (satt, j,aatt, j)1⩽ j⩽3)

and we get the desired result : q′ ⇚⇛1
{att} r′ and r ∼att r′.

The mirror argument also works : for q ⇚⇛1
{att} q′ and

q′ ∼att r′ we may choose q ⇚⇛1
{att} r and r ∼att r′.

Conditions 2 and 2-dual for ⇚⇛2
{att} can be proved si-

milarly, by observing that, q ⇚⇛2
{att} q′ and q ∼att r with

q, r ∈ Glex and q′ ∈ Gcount, then :

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi,vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3)
q′= (vopen,pub,(cok)1⩽k⩽nc,(chi,vi)1⩽i⩽n,(s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3)

r = (vopen,pub,(ribb`)1⩽`⩽3n,(chi,vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3)

with the same relationship between variables of q and r ;
and then, for

r′ = (vopen, pub, (cok)1⩽k⩽nc, (ch′i , v
′
i)1⩽i⩽n−1, (chatt, vatt),

(s′i j,a
′
i j)1⩽i⩽n−1,1⩽ j⩽3, (satt, j,aatt, j)1⩽ j⩽3)

we get q′ ⇚⇛2
{att} r′ and r ∼att r′.

Finally, for conditions 3 and 3-dual, note first that for any
state q ∈ Gtot or q ∈ Glex, Catt(q) is just the equivalence class
of q w.r.t. ∼att, that is, if q = (vopen, pub, (ribb`)1⩽`⩽3n,
(chi, vi)1⩽i⩽n, (si j,ai j)1⩽i⩽n,1⩽ j⩽3), then Catt(q) is com-
posed of all states with local state for att of the form
((ribb`)1⩽`⩽3n,
chatt, vatt, (satt, j,aatt, j)1⩽ j⩽3). Simi-
larly, for q′ ∈ Gcount with q′ =
(vopen, pub, (co′k)1⩽k⩽nc, (ch′i,v

′
i)1⩽i⩽n, (s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3),

Catt(q′) is composed of all states with local state for att
composed of ((cok)1⩽k⩽nc, chatt, vatt, (satt, j,aatt, j)1⩽ j⩽3).

Note first that, in all three iCGS, on each neighborhood
Catt(q), only one or two partial strategies for att can be
defined, depending whether the vote is open or not. There-
fore, we may define the mapping S TCGtot

att (⋅),CGlex
att (⋅) to asso-

ciate to each partial strategy prescribing nop to att in some
CGtot

att (q) the quasi-identical strategy prescribing the same
action in CGlex

att (q′), and, similarly, to the partial strategy
prescribing vote to att in CGtot

att (q) the strategy prescribing
vote in CGlex

att (q′). The dual mapping S T ′ is defined simi-
larly, and the same definitions work for the bisimulation
⇚⇛2

{att}. Note that these definitions already satisfy property
3.(b) of bisimulations.

To prove property 3.(a), consider first the strategy voteatt

prescribing vote for att on CGtot
att (q) and take some state r

with q′
voteattÐÐÐ→ r′. Since when voting is enabled, Environ-

ment does not collect votes, r′ has the same BB as q′ and all
booleans ai j are false. Therefore, we may choose the state
r which has the same local variables as r′ for all voters and
the same BB as q, and get q′

S T(voteatt)ÐÐÐÐÐ→ r′ and r ⇚⇛1
{att} r′.

A similar proof works for ⇚⇛2
{att}.

Consider now the strategy noneatt prescribing action
nop for att on CGtot

att (q) and take again some state r′ with
q′

nopattÐÐ→ r′. Note that this action is only enabled when the
vote is closed. Then the only agent which executes a non-
idle action on the above transition is Environment. By this
transition, Environment copies one of the ribbons onto the
BB. This transition can then be simulated in Gtot by copying
the same ribbon (but which might be stored at a different
position in q than in q′) onto the BB. A mirror argument
can be used to prove 3.(a) for S T ′.



Finally, for proving point 3.(a) for q ⇚⇛2
{att} q′, note that

the same considerations above apply for the case of a tran-
sition from a state q′ in which the voting is open. For the
case of states q, q′ where the voting is closed and hence
only strategy nopatt is available to the attacker, we note
that the only action which is compatible with q

nopattÐÐ→ r in
both models is Environment collecting votes. This corres-
ponds in Gcount with an action in which Environment counts
votes, and hence we may find a state r which is an nopatt-
compatible successor of q, which has the same local states
for voters as r′ and in which each counter cok of r′ keeps
the sum of the bullets on kth line on the copied ribbons
from r. This will ensure r ⇚⇛2

{att} r′.

5 Experimental Results

In this section, we exhibit the improvements in running
time when checking the same properties over the three bisi-
milar models. The three models are checked with growing
number of voters and candidates. For our experiments, we
have used the last version of MCMAS (1.2.2) [31]. Tests
were made on a virtual machine running Ubuntu 16.04.1
LTS on a Dell PowerEdge R720 server with two Intel Xeon
E5-2650 8 core processors at 2GHz, and 128 GB of RAM.
The .ispl files containing the tested models of the voting
system are available at [1].

The formulas that are verified on all these models re-
present a variant of coercion resistance [44]. They specify
the fact that the attacker att has no strategy by which he
could know how agent i has voted (i ≠ att) :

ϕi = ⟪att⟫F(pub ∧ (vi → ⋁
1⩽ j⩽nc

Katt( j = chi)))

(Recall that, in our model the attacker is also a voter, which
corresponds with situations in which a voter fully coope-
rates with the attacker).

MCMAS provides two options, -atlk 2 or -uniform,
for checking ATL formulas with uniform strategies, with
some differences in the semantics of ATL formulas
(-uniform is similar with “irrevocable strategies” of [2]).
We observed that neither of these options were stable, and
lead to a number of experiments ending with inconsistent
results or MCMAS terminating abnormally. We refer the
interested reader to [10].

We then checked the coercion resistance property with
-atlk 1 option, which utilizes ATL with perfect infor-
mation. This is nevertheless consistent with our theoretical
setting since all tests show that the formulas are false, and
whenever a positive ATL formula is false under the perfect
information semantics, it is also false under the imperfect
information semantics, and hence preserved by alternating
bisimulations.

For the total model Gtot the only configurations for which
MCMAS produces results in reasonable time are shown in

Table 1, which gives running times and state space (deno-
ted ∣S ∣). For Glex, the state space is smaller and, therefore,
the model with three voters and three candidates gives a
also reasonable running time. For all the other cases, MC-
MAS outputs the result faster than for Gtot. Statistics are
given in Table 2. Finally, the models Gcount can be veri-
fied much faster, the number of reachable states decreasing
substantially, allowing for verifying the formula for 4 vo-
ters and 3 candidates in 44 seconds. Statistics are given in
Table 3. In all these tables, NA means a 2 hours timeout
has been reached without obtaining any result.

# voters
2v 3v 4v

#
ca

nd
id

.

2c 0.93 s 7.765 s NA
|S| = 3.49091e+06 |S| = 1.46625e+10

3c 23.61 s NA NA
|S| = 2.44048e+08

Table 1 – MCMAS statistics for Gtot

# voters
2v 3v 4v

#
ca

nd
id

.

2c 0.38 s 3.42 s 823.12 s
|S| = 196388 |S| = 1.92068e+08 |S|= 2.26211e+11

3c 15.32 s 4807.79 s NA
|S| = 8.09895e+06 |S| = 1.03982e+11

Table 2 – MCMAS statistics for Glex

# voters
2v 3v 4v 5v

#
ca

nd
id

.

2c 0.15 s 0.72 s 2.39 s 17.03 s
|S| = 4406 |S| = 39201 |S|= 3.08043e+06 |S| = 6.57133e+07

3c 0.44 s 4.29 s 44.18 s NA
|S| = 101993 |S| = 3.81446e+06 |S| = 2.17425e+09

Table 3 – MCMAS statistics for Gcount

We also verified an anonymity property, specified in
CTLK, with the same aim at showing the improvements
obtained with bisimulations. Note that, for any group A,
an A-bisimulation is also a bisimulation of the epistemic
labeled transition systems, hence the two systems satisfy
the same CTLK formulas. The CTLK formula that we tes-
ted is ϕc

i = AG(not_same → (⋀1⩽ j⩽nc ¬Katt pchi= j)) which
utilizes an atomic proposition not_same which avoids una-
nimity. Note that not_same can be defined using only the
atoms in AP.

6 Conclusions

In this paper we advanced the state-of-the-art in the mo-
del theory of the strategy logic ATL under imperfect infor-
mation and imperfect recall. Specifically, we introduced a
novel notion of (bi)simulation on iCGS that preserves the
interpretation of ATL formulas (Theorem 9). Then, we ap-
plied this theoretical result to the verification of the Three-
Ballot voting system, a relevant voting protocol without



# voters
2v 3v 4v

#
ca

nd
id

.
2c 0.776 s 6.531 s NA

|S| = 3.72655e+06 |S| = 1.46625e+10

3c 19.811 s 2628.61 s NA
|S| = 2.44048e+08 |S| = 1.69347e+13

Table 4 – MCMAS statistics : Gtot and CTLK formula

# voters
2v 3v 4v

#
ca

nd
id

.

2c 0.37 s 3.035 s NA
|S| = 196388 |S| = 1.92068e+08

3c 15.26 s NA s NA
|S| = 8.09895e+06

Table 5 – MCMAS statistics : Glex and CTLK formula

# voters
2v 3v 4v 5v

#
ca

nd
id

.

2c 0.099 s 0.553 s 1.507 s 8.87 s
|S| = 4406 |S| = 39201 |S|= 3.08043e+06 |S| = 6.57133e+07

3c 0.44 s 4.29 s 26.078 s NA
|S| = 101993 |S| = 3.81446e+06 |S| = 2.17425e+09

Table 6 – MCMAS statistics : Gcount and CTLK formula

cryptography. In particular, we model check the “simpler”
bisimilar abstractions of the ThreeBallot system, and then
transfer the result to the original model in virtue of Theo-
rem 9. As reported in the experimental results, the gains in
terms of both time and memory resources are significant.

The literature on both logics for strategies and the for-
mal verification of voting protocols is extensive and rapidly
growing. Hereafter we only consider the works most clo-
sely related to the present contribution.

Bisimulations for ATL. An in-depth study of model
equivalences induced by various temporal logics appears in
[23]. Bisimulations for ATL with perfect information have
been introduced in [4]. Since then there have been various
attempts to extend these to imperfect information contexts
[2, 17]. In [17, 32] non-local model equivalences for ATL
with imperfect information have been put forward. Howe-
ver, to our knowledge these works do not deal with the im-
perfect information/imperfect recall setting here conside-
red, nor do they provide a local account of bisimulations.

Verification of Voting Protocols. The present contri-
bution is inspired by recent works on the verification of
voting protocols, mostly by using the π-calculus and CSP
[18, 25, 43]. In [5] the authors define two semantic criteria
for single transferable vote (STV) schemes, then show how
bounded model-checking and SMT solvers can be used to
check whether these criteria are met. In [35] anonymity
properties of voting protocols are verified by using CSP. In
particular, in [36] the authors construct CSP models of the
ThreeBallot system and use them to produce an automated
formal analysis of their anonymity properties. One issue we
identify with this approach is that the system model and the
property to be verified are not clearly distinguished. On the
contrary, multi-agent logics allow a clear separation of the
two, as well as a wider variety of properties, also involving

the existence of attacker strategies. Specifically, in our ex-
periments we are able to model check ThreeBallot systems
with 5 voters and 2 candidates, or 4 candidates and 3 vo-
ters, while in [36] results are provided for at most 3 voters
and 2 candidates.

Future Work. We envisage several extensions of the
present contribution. First, it is of interest to develop bi-
simulations for iCGS with perfect and bounded recall, as
in many application domains agents do have some memory
of past states and actions. Also for the verification of voting
protocols, it is key to extend ATL with epistemic modalities
to express naturally properties of anonymity and confiden-
tiality. We remarked that individual knowledge is expres-
sible in the subjective semantics. However, no such result
holds for the objective interpretation, nor common know-
ledge happens to be definable. Finally, we aim at automa-
ting and implementing the procedures described in this pa-
per in a model checking tool for the formal verification of
(electronic) voting protocols.
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A Appendix

Proof of Proposition 8
We will inductively define a sequence of partial uniform

strategy profiles (σn
A)n∈N ∈ PS trA with σn

A = (σn
i )i∈A and

dom(σn
A) ⊆ dom(σn+1

A ) for each n ∈ N. These partial strate-
gies will be constructed using the strategy σA and the map-
ping S T from point 3 in Def. 6 of simulation.

Define first the sequence domn(σA,q), for n ∈ N, of sets
of G-states such that s ∈ domn(σA,q) if s can be reached in
at most n steps from q by applying actions compatible with
strategy σA :

dom0(σA,q) = ∅, dom1(σA,q) = CA(q)

domn+1(σA,q) = domn(σA,q)∪{r ∣ ∃s∈domn(σA,q), s
σA(s)ÐÐÐ→r}

Also, denote σn
A the partial strategy resulting from res-

tricting σA to domn(σA,q) (and setting it as undefined on
the complement of this set).

Further, consider some total order ≾ on S . Then, min≾ U
is the minimum of U w.r.t. ≾. Similarly, we assume that S ′

is endowed with a total order ≾′.
The desired sequence of partial uniform strategy profiles

σn
A, for n ⩾ 1, is defined asσ1

A(r)′ = S TCA(u),C′A(u′)(σ1
A)(r′)



and

σ
n+1
A (r

′

) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

σn
A(r

′
), for r′ ∈ dom(σn

A)

S TCA(u),C′A(u
′)(σ

n+1
A )(r

′
), for C′

A(r
′
) ∩ ran(σn

A) ≠ ∅,

r′ /∈ dom(σn
A), u

′
= min≾′ C′

A(r
′
) ∩ ran(σn

A)

and u = min≾{v ∈ domn
(σA, q) ∣ v⇛A u′}

By induction on n we may easily observe that whenever
C′

A(r′) ∩ dom(σn
A) ≠ ∅, then C′

A(r′) ⊆ dom(σn
A).

We may also show that, whenever we take some u′ ∈
C′

A(r′) ∩ ran(σn
A) ≠ ∅ with r′ /∈ dom(σn

A), we have
{u ∈ domn(σA,q) ∣ u ⇛A u′} ≠ ∅. To see this, take
some u′ ∈ C′

A(r′) ∩ ran(σn
A), which implies that there exists

v′ ∈ dom(σn
A) with v′

σn
A(v′)
ÐÐÐ→ u′. But this means, by de-

finition, that σn
A(v′) = S TCA(v),C′A(v′)(σn

A)(v′) for some
v ⇛A v′ with v ∈ dom(σn−1

A ). From property 3.a, this im-

plies the existence of u with u ⇛A u′ and v
σA(v)ÐÐÐ→ u, hence

v ∈ dom(σn
A).

We then prove by induction on n that σn
A is uniform. The

case n = 1 is trivial. As regards the induction step, note
first that, if r′1, r

′
2 ∈ dom(σn+1

A ), C′
A(r′1) = C′

A(r′2) and if
r′1 ∈ dom(σn

A) then r′2 ∈ dom(σn+1
A ) as well.

On the other hand, for r′1, r
′
2 ∈ dom(σn+1

A ) ∖ dom(σn
A), if

r′1 ∼i r′2 for some i ∈ A, we have that C′
A(r′1) = C′

A(r′2).
Therefore, if we take r′ = min≾′ C′

A(r′1) ∩ ran(σn
A) and

r = min≾{u ∈ domn(σA,q) ∣ u ⇛A r′} we have, by defini-
tion, σn+1

A (r′1) = S TCA(r),C′A(r′)(σn+1
A )(r′1) and σn+1

A (r′2) =
S TCA(r),C′A(r′)(σn+1

A )(r′2) and these values are identical,
since S TCA(r),C′A(r′)(σA) is a uniform strategy in G′.

As a result, the “limit” partial strategy profile σA =
⋃
n∈N
σn

A, defined by σA(q) = σn
A(q) whenever q ∈ dom(σn

A),

is clearly uniform and has dom(σA) = ran(σA). We then
only need to transform it into a (total) uniform strategy pro-
file by imposing a fixed action a0 ∈ Act wherever σn

A was
undefined, that is, defining the following uniform strategy
profile σ′A :

σ′A(r′) =
⎧⎪⎪⎨⎪⎪⎩

σA(r′) for r′ ∈ dom(σA)
a0 otherwise

To prove property (*) for the objective semantics, consi-
der a run λ′ ∈ outG

′

ob j(q′, σ′A) and set λ[0] = q. We then
build inductively the run λ as follows : assume λ[k] has
been built, with λ[ j] ⇛A λ′[ j] for all j ⩽ k. Then we ap-
ply point 3.a from Def. 6 of simulation to the pair λ[k]⇛A

λ′(k) and by using the fact that λ′(k + 1) ∈ σ′A(λ[k]) =
S TCA(v),C′A(v′)(σA)(λ′(k)), where v′ = min≾′ C′

A(λ′(k))
and v = min≾{u ∈ domn(σA,q) ∣ u ⇛A λ

′(k)}, to obtain the
existence of a state u ∈ σA(λ[k]) such that u ⇛A λ

′(k + 1).
This is the state that we choose for λ[k+1], i.e., λ[k+1] ∶=
u.

To prove property (*) for the subjective semantics, consi-
der a run λ′ ∈ outG

′

sub j(q′, σ′A). Hence, λ′(0) ∈ C′
A(q′).

By applying point 2 of the definition of simulation (and
a short induction on the length of the indistinguishability
path connecting q′ with λ′(0)), we obtain the existence of
a state r ∈ CA(q) such that r ⇛A λ

′(0). Then set λ[0] ∶= r.
The rest of the construction of λ′ is identical to the induc-
tive case for the objective semantics, that is, for every k, we
set λ[k + 1] ∶= u where u ∈ σA(λ[k]) and u ⇛A λ

′(k + 1).
The property (*) is then proved for both semantics.

Proof of Theorem 9
The proof is by induction on the structure of ϕ.
The case for propositional atoms is immediate as

(G,q) ⊧ p iff p ∈ π(q), iff p ∈ π′(q′)) by definition of
bisimulation, iff (G′,q′) ⊧ p. The inductive case for propo-
sitional connectives is also straightforward.

For ϕ = ⟪A⟫ψ1Uψ2, (G,q) ⊧ ϕ implies that for some
strategy σA, for all λ ∈ outGx (q, σA), for some j1 ⩾ 0,
(G, λ[ j1]) ⊧ ψ2 and for every k < j1, (G, λ[k]) ⊧ ψ1.
Again by Proposition 8, there exists strategy σ′A s.t. for
all λ′ ∈ outG

′

x (q′, σ′A), there exists λ ∈ outGx (q, σA) with
λ[ j] ⇚⇛A λ

′[ j] for all j ⩾ 0. By the induction hypothesis,
we get that for all j, (G, λ[ j]) ⊧ ψ1 iff (G′, λ′[ j]) ⊧ ψ1 and
similarly for ψ2. Hence, (G′, λ′[ j1]) ⊧ ψ2 and (G′, λ′[k]) ⊧
ψ1 for all k < j1, that is, (G′,h′) ⊧ ϕ.

The cases for ϕ = ⟪A⟫Xψ and ϕ = ⟪A⟫ψ1Rψ2 are proved
similarly.


