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Abstract
In this paper we present a tableau algorithm for build-

ing completion graphs of an ontology expressed in the de-
scription logic SHIQ with individuals. Based on a dis-
tance defined over completion graphs, we introduce a re-
vision operation applied to a SHIQ ontology with a set
of new semantic constraints. This revision operation com-
putes the completion graphs that a revised ontology should
admit. However, there does not always exist an ontology
expressible in SHIQ from which a tableau algorithm gen-
erates exactly a given set of completion graphs. This leads
us to introduce the notion of upper approximation ontology
from which a tableau algorithm can generate the smallest
set of completion graphs including a given set of comple-
tion graphs. This notion allows us to design an algorithm
for constructing a revised ontology from an initial ontology
with a set of new semantic constraints. We also implement
the proposed algorithms with optimizations and report some
experimental results to show that a model-based approach to
revision of expressive ontologies is practicable.

1 Introduction

Formalisms based on Description Logics (DLs) such as
OWL are widely used to represent ontologies encapsula-
ted in semantics-based applications. An interesting feature
of ontologies expressed in DLs (called DL ontologies) is
to support automated inference services which allow onto-
logy designers to detect eventual errors and allow users to
entail new knowledge from ontologies with help of a reaso-
ner. However, ontologies are not static but evolve over time.
When changing ontologies, we are confronted with the pro-
blem of dealing with inconsistencies since new knowledge
may contradict what exists in the ontology. The problem of
revising a DL ontology is closely related to the problem of
belief revision which has been widely discussed in the lite-
rature. Among early works on belief revision, Alchourrón,
Gärdenfors and Makinson (AGM) [4] introduced intuitive
and plausible constraints (namely AGM postulates) which

should be satisfied by any rational belief revision operator.
Existing belief revision approaches can be classified into
syntax-based and model-based (semantic) approaches [18].

Syntax-based approaches manipulate directly syntactical
entities such as formulas occurring in a knowledge base
(KB). To take into account a new formula in preserving
consistency, these approaches try to identify other formu-
las which should be removed. A main advantage of syntax-
based approaches is to allow for distinguishing between
the relevance of different formulas [2]. For instance, one
can affect a lower priority to formulas that can change and
a higher priority to those that would be “protected”. The
main issues are that the procedures resulting from these ap-
proaches heavily depend on the syntax of knowledge bases.
Despite these issues, there have been some syntax-based
belief revision operations developed for revising a DL on-
tology [10, 15].

Contrary to syntax-based approaches, semantic approaches
investigate and manipulate models of ontologies rather than
their syntactical entities. The main issues in adapting se-
mantic approaches to DL ontologies are how to define a
distance between models and how to compute a revised
ontology from the models selected according to the defi-
ned distance. In addition, other problems may arise from
dealing with models of DL ontologies. First, DL ontolo-
gies have infinitely many models which make impossible to
construct directly a revised ontology from models. Second,
models of a DL ontology have usually infinite complex
structures, which may require a complex definition of dis-
tance between two models. Despite these problems, there
have been several attempts to adapt classical model-based
revision approaches to DL ontologies [9, 19, 21, 20, 22].

In this paper, we propose a new model-based approach for
revising ontologies in SHIQ with individuals. A prelimi-
nary result of the present work for revising ontologies in
SHIQ without individuals was published at LPAR forum
[17]. We base the construction of our revision procedure



on the following points : (i) using completion graphs ge-
nerated by a novel tableau algorithm to characterize the
semantics of a SHIQ ontology. A completion graph for
an ontology O consists of nodes and edges which are res-
pectively labelled by sets of concepts and roles from the
signature of O in such a way that each axiom from O is sa-
tisfied in each node and edge. This algorithm must build a
set of completion graphs, denoted FM(O), for an ontology
O by considering all intrinsic non-deterministic cases ins-
tead of building one completion graph as existing tableau
algorithms do ; (ii) defining a distance over a set of comple-
tion graphs for addressing the principle of minimal change.
Given an ontologyO′ containing new axioms which should
be taken into account when revising, this distance can help
to choose completion graphs from FM(O′) that are seman-
tically closest to those in FM(O). A revised ontology of O
by O′ should admit the chosen completion graphs as mo-
dels ; (iii) introducing the notion of approximation onto-
logy to overcome inexpressibility issue. Our revision pro-
cedure returns an approximation ontology that is expres-
sible in SHIQ and admits a given set of completion fo-
rests.

To illustrate the idea behind the construction, we consider
the following running example.

Example 1 Given an ontology UNI consis-
ting of the following axioms et assertion : α1 :
Professor v Researcher t Expert (Professors are resear-
chers or experts), α2 : Professor v ∃supervises.Student
(A professor supervises at least a student), α3 :
Professor v (≥ 2 teaches.Course) (A professor teaches
at least two courses), and β : Professor(Alex) (Alex is a
professor).

Assume that researchers and experts do not super-
vise any student. We add to UNI the following
axioms which express these semantic constraints :
(δ1) : Researcher v ∀supervises.(¬Student), (δ2) :
Expert v ∀supervises.(¬Student).

However, the presence of δ1 and δ2 will make UNI incon-
sistent, and this requires a revision to maintain consistency
of UNI. One of the ways of revision is to remove a num-
ber of axioms from UNI. Intuitively, we can eliminate the
axiom α1 or α2 to maintain consistency of UNI. In this
case, if α1 is chosen to remove then the obtained ontology
Ô = {α2, α3, β, δ1, δ2} is consistent. However, the know-
ledge “Professors are experts” in α1 does not contradict
the ontology Ô but it has been removed together with α1.
In other words, the goal should be to build a new ontology
O∗ which is “compatible” with the axioms from UNI such
that O∗ is semantically as close as possible to UNI. We can
check that the completion graphs F1, F2 in Figure 1 yield
models of UNI. Similarly, the two completion graphs in Fi-
gure 2 yield models of {δ1, δ2}.

If we define a distance between completion graphs based
on structural similarity, it would be plausible to say that
F ′1 is closer to F1 and F2 than F ′2 . Therefore, a revised
ontology O∗ should admit F ′1 rather than F ′2 . Indeed, this
intuition will be confirmed in Section 5 where we present a
procedure for computing the revised ontology.

The present paper is organized as follows. Section 2 des-
cribes the DL SHIQ. In Section 3, we present a novel
tableau algorithm for building a set of completion forests
which represents all models of a SHIQ ontology. Section
4 introduces a revision operation which satisfies all revi-
sion postulates reformulated for DL ontologies. Based on
the defined revision operation, we introduce in Section 5
the notion of upper approximation which allows us to pro-
pose a procedure for computing a revised ontology expres-
sible in SHIQ from a set of completion forests. Section
6 describes some techniques for optimizing our procedure.
We also describe an implementation of our algorithm and
report some experimental results in Section 7. Finally, we
summarize our work in Section 8.

2 Preliminaries

We begin by presenting the syntax and the semantics of
SHIQ. Let R be a non-empty set of role names and
R+ ⊆ R be a set of transitive role names. We use RI =

{R− | R ∈ R} to denote a set of inverse roles. Each element
of R ∪ RI is called a SHIQ-role. To simplify notations
for nested inverse roles, we define a function Inv(S ) = R−

if S = R ; and Inv(S ) = R if S = R− where R ∈ R. A
role inclusion axiom is of the form R v S for two (possi-
bly inverse) SHIQ-roles R and S . A role hierarchy R is
a finite set of role inclusion axioms. A sub-role relation ∗v
is defined as the transitive-reflexive closure of v on R+ =

R ∪ {Inv(R) v Inv(S ) | R v S ∈ R}. We define a function
Trans(R) which returns true iff R is a transitive role. More
precisely, Trans(R) = true iff R ∈ R+ or Inv(R) ∈ R+. A
role R is called simple with respect to (w.r.t.) R+ iff R < R+

and, for any R′∗vR, R′ is also a simple role. An interpreta-
tion I = (∆I, ·I) consists of a non-empty set ∆I (domain)
and a function ·I which maps each role name to a subset of
∆I×∆I such that R−I = {〈x, y〉 ∈ ∆I×∆I | 〈y, x〉 ∈ RI} for
all R ∈ R, and 〈x, z〉 ∈ S I, 〈z, y〉 ∈ S I implies 〈x, y〉 ∈ S I

for each S ∈ R+. An interpretation I is a model of R, writ-
ten I |= R, if RI ⊆ S I for each R v S ∈ R.

Let C be a non-empty set of concept names. The set of
SHIQ-concepts is inductively defined as the smallest set
containing all C in C, >, C u D, C t D, ¬C, ∃R.C, ∀R.C,
(≤ n S .C) and (≥ n S .C) where n is a positive integer, C
and D are SHIQ-concepts, R is a SHIQ-role and S is a
simple role w.r.t. a role hierarchy. We write ⊥ for ¬>. The
interpretation function ·I of an interpretation I = (∆I, ·I)



F1 :

x

{{Alex},Professor,Researcher,¬Expert,
∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student,
¬Professor}

teaches

z

{Course,
¬Professor}

teaches

w

{Course,
¬Professor}

F2 :

x

{{Alex},Professor,¬Researcher,Expert,
∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student,
¬Professor}

teaches

z

{Course,
¬Professor}

teaches

w

{Course,
¬Professor}

Figure 1 – Completion graphs yielding models of UNI

F ′1 :

x

{{Alex},Professor,¬Researcher,¬Expert,
∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student}

teaches

z

{Course}

teaches

w

{Course}

F ′2 :

x

{{Alex},Professor,Researcher,Expert,
∀supervises.(¬Student),≥ 2 teaches.Course}

teaches

z

{Course}

teaches

w

{Course}

Figure 2 – Completion graphs yielding models of {δ1, δ2}

maps each concept name to a subset of ∆I such that >I =

∆I, (C u D)I = CI ∩ DI, (C t D)I = CI ∪ DI, (¬C)I =

∆I\CI, (∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I, 〈x, y〉 ∈ RI ∧ y ∈
CI}, (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I, 〈x, y〉 ∈ RI ⇒ y ∈ CI},
(≥ n S .C)I = {x ∈ ∆I | |{y ∈ CI | 〈x, y〉 ∈ S I}| ≥ n},
(≤ n S .C)I = {x ∈ ∆I | |{y ∈ CI | 〈x, y〉 ∈ S I}| ≤ n}
where |S | stands for the cardinality of a set S . An axiom
C v D is called a general concept inclusion (GCI) where
C,D are (possibly complex) SHIQ-concepts, and a finite
set of GCIs is called a terminology T . An interpretation I
satisfies a GCI C v D, written I |= (C v D), if CI ⊆ DI.
I is a model of T , written I |= T , if I satisfies each GCI
in T .

Let I be a set of individual names. An assertion is of the
form C(a), R(a, b), or a 6 .= b for a, b ∈ I, a SHIQ-role R
and a SHIQ-concept C. An ABox consists of a finite set
of assertions. For an interpretation I = (∆I, ·I), an element
x ∈ ∆I is called an instance of a concept C iff x ∈ CI. For
ABoxes, the function ·I of I maps each individual a ∈ I
to some element aI ∈ ∆I. An interpretation I satisfies an
assertion C(a) (resp. R(a, b), and a 6 .= b) iff aI ∈ CI (resp.
〈aI, bI〉 ∈ RI, and aI , bI). I satisfies an ABox A if
it satisfies each assertion in A. Such an interpretation is
called a model ofA, denoted by I |= A.

We use O = (T ,R,A) to denote a SHIQ ontology, where
T is a SHIQ terminology, R is a SHIQ role hierarchy,
andA is an ABox. An ontologyO = (T ,R,A) is said to be
consistent if there is a model I of T , R andA, i.e., I |= T ,
I |= R and I |= A. Additionally, we use Mod(O) to denote
all the models, and S(O) = R∪C∪I to denote the signature
of an ontology O.

For the ease of construction, we assume all concepts to
be in negation normal form (NNF), i.e., negation occurs

only in front of concept names. Any SHIQ-concept can
be transformed to an equivalent one in NNF by using De
Morgan’s laws and the duality between concepts [14]. For
a concept C, we use nnf(C) and ¬̇C to denote respectively
the NNF of C and ¬C. The function nnf(C) can be compu-
ted in polynomial time in the size of C [7]. In the remaining
of this section, we introduce some notations which will be
used in the next sections.

Definition 1 (Subconcepts) Let O = (T ,R,A) be a
SHIQ ontology with S(O) = R ∪ C ∪ I. A set sub(O)
is inductively defined as follows :

sub(O) = sub(T )∪sub(A)∪{¬̇C | C ∈ sub(T )∪sub(A)}
sub(T ) =

⋃
CvD∈T

sub(nnf(¬C t D))

sub(A) = {sub(nnf(C)) | C(a) ∈ A}

sub(C) =



{C,¬C} if C ∈ C
sub(E) ∪ sub(F) if C ∈ {E u F, E t F}
{C} ∪ {∃R′.E | R∗vR′} ∪ sub(E) if C =∃R.E
{C} ∪ {∀R′.E | R∗vR′} ∪ sub(E) if C =∀R.E
{C} ∪ {≥ nR′.E | R∗vR′} ∪ sub(E)

if C = (≥ nR.E)
{C} ∪ sub(E) if C = (≤ nR.E)

Note that sub(O) contains no disjunctions or conjunctions
since they are replaced with their disjuncts and conjuncts.

To characterize the semantics of an ontology we need to
explore all intrinsic non-determinism arising from disjunc-
tions and numbering restrictions when constructing a com-
pletion graph for the ontology. For this reason, we intro-
duce a function Flat(C) which makes explicit all disjunc-
tions at top-level of a concept C (i.e. those that do not ap-
pear in the filler of a universal, existential, numbering res-
trictions occurring in C).



Definition 2 (Flattening) Let C be a SHIQ concept. We
define a function Flat(C) which returns a set of subsets of
sub(C) as follows :

1. If C is a concept name or C is an existential, universal,
number restriction, we define Flat(C) = {{C}} ;

2. If C = E t F, we define Flat(C) = Flat(E) ∪ Flat(F) ;
3. If C = E u F, we define Flat(C) = {W ∪ W ′ | W ∈

Flat(E),W ′ ∈ Flat(F)}

Applying the item 3 in Definition 2 to a concept C
may make Flat(C) increase exponentially. For instance,
Flat((A1tB1)u(A2tB2)) = {W∪W ′ | W ∈ {{A1}, {B1}},W ′ ∈
{{A2}, {B2}}} = {{A1, A2}, {A1, B2}, {B1, A2}, {B1, B2}}. More
general, if C = (A1tB1)u· · ·u (AntBn), Flat(C) contains
2n elements.

3 Novel Tableau-based algorithm

In this section we introduce a tableau-based algorithm for
generating a finite set of completion graphs representing
the infinite set of all models of a SHIQ ontology. Hor-
rocks and colleagues [12] have proposed a tableau algo-
rithm for checking consistency of a SHIQ ontology and
have shown that there always exists a finite completion fo-
rest iff the ontology is consistent. This algorithm attempts
to construct a completion forest, returns “YES” if it suc-
ceeds in building such a completion forest and “NO” if it
fails after considering all possibly non-deterministic cases.
To be able to characterize the semantics of an ontology,
we need rather a set of completion forests which describes
different models resulting from non-deterministic logical
constructors than one completion forest. For this purpose,
we adapt the tableau algorithm by Horrocks and colleagues
[12] in such a way that it would explore all intrinsic non-
deterministic cases.

Definition 3 (Completion forest) Let O = (T ,R,A) be a
SHIQ ontology. A completion forest F for O is a tuple
F = (G,T 〈x̂1〉, . . . ,T 〈x̂n〉) where

• G = (V,E,L) is a directed graph with V a set of root
nodes, E a set of edges connecting root nodes and L a
labelling function which associates to each node x ∈ V
a set L(x) ⊆ sub(O) and to each edge 〈x̂, ŷ〉 ∈ E a set
L(〈x̂, ŷ〉) ⊆ R ∪ RI. A node ŷ ∈ V is called an R-neighbor
of x̂ ∈ V if R ∈ L(〈x̂, ŷ〉) or Inv(R) ∈ L(〈̂y, x̂〉).

• Each T 〈x̂i〉 = (Vi, Ei, Li) (1 ≤ i ≤ n) is a tree rooted by
x̂i belonging to G (i.e. x̂i ∈ V), Vi a set of nodes, Ei a set
of edges, and Li a labelling function which associates to
each node x ∈ Vi a set Li(x) ⊆ sub(O) and to each edge
〈x, y〉 ∈ Ei a set Li(〈x, y〉) ⊆ R ∪ RI.

If two nodes x, y ∈ Vi (of some tree T 〈x̂i〉 = (Vi, Ei, Li))
connected by an edge 〈x, y〉 ∈ Ei, then y is called a suc-
cessor of x, and x is called a predecessor of y ; ancestor

is the transitive closure of predecessor. A node y is cal-
led an R-successor of x if, for some role R′ with R′∗vR,
R′ ∈ L(〈x, y〉) ; x is called an R-predecessor of y, if y is
an R-successor of x. A node y is called an R-neighbor of x
if y is an R-successor or x is an Inv(R)-successor of y.

A node x ∈ Vi is called blocked by a node y ∈ Vi if x is
not a root node and it has ancestors x′, y and y′ such that
(i) y is not a root node, (ii) x is a successor of x′ and y is
a successor of y′, (iii) L(x) = L(y), L(x′) = L(y′), and (iv)
L(〈x′, x〉) = L(〈y′, y〉).

Furthermore, there are an inequality relation 6 .= and an
equality relation .

= defined over nodes in F . In addition,
F is said to contain a clash if (i) there is some node x in
F such that either {A,¬A} ⊆ L(x) for some concept name
A ∈ C, or (ii) (≤ nS .C) ∈ L(x) and there are (n + 1) S -
neighbors y1, · · · , yn+1 of x with yi 6

.
= y j and X ⊆ L(yi) for

some X ∈ Flat(C) and all 1 ≤ i < j ≤ (n + 1).

Based on the Horrocks and colleagues’ work [12], we de-
sign a tableau algorithm for building a completion forest
by applying the expansion rules in Figure 3. There are two
main differences between the rules in Figure 3 and those
presented in a standard tableau algorithm : (i) the absence
of conjunction and disjunction rules. According to Defini-
tion 2, applying the function Flat to a concept freshly added
to the label of a node removes all conjunctions and dis-
junctions at top-level from that concept ; (ii) the presence
of the sat-rule (sat stands for saturate). A choice of a sub-
set S ⊆ sub(O) in the sat-rule must include all flattened
concepts from GCI axioms (such as those added by the v-
rule [12]). In addition, the sat-rule adds to each node la-
bel either C or ¬̇C for each C ∈ sub(O). These behaviors
may lead to an exponential blow-up but it is needed for
constructing an approximation ontology from a set of com-
pletion forests and a set of subconcepts (Section 5). An op-
timization of this rule will be proposed and discussed in
Section 6.

For an input ontologyO = {T ,R,A}, our tableau algorithm
starts by initializing a completion forest F with only root
nodes and edges between them. This part of F represents
individuals and assertions defined inA. The algorithm ap-
plies the rules from Figure 3 to each node until no rule is
applicable to any node. In this case, F is called complete.
If F contains no clash it is called clash-free.

Lemma 1 (Soundness and completeness). Let O =

(T ,R,A) be a SHIQ ontology.

1. The tableau algorithm with the expansion rules in Fi-
gure 3 terminates.

2. If the tableau algorithm with the expansion rules in
Figure 3 yields a complete and clash-free completion
forest from the input ontology O then O is consistent ;

3. If O is consistent then the tableau algorithm with the



∃-rule : if (1) ∃S .C ∈ L(x), x is not blocked, and (2) x has no S -neighbor y s.t. X ⊆ L(y) for some X ∈ Flat(C),
then create a new node y with L(〈x, y〉)← {S } and L(y)← X for some X ∈ Flat(C).

∀-rule : if (1) ∀S .C ∈ L(x), and (2) there is an S -neighbor y of x s.t. X * L(y) for all X ∈ Flat(C),
then L(y)← L(y) ∪ X for some X ∈ Flat(C).

∀+-rule : if (1) ∀S .C ∈ L(x), (2) there is an R with Trans(R) s.t. R∗vS , and (3) there is an R-neighbor y of x s.t.
∀R.C < L(y), then L(y)← L(y) ∪ {∀R.C}.

≥-rule : if 1. (≥ nS .C) ∈ L(x), x is not blocked, and (2) x has no n S -neighbors y1, · · · , yn such that X ⊆ L(yi) for
some X ∈ Flat(C) and yi 6

.
= y j for 0 ≤ i < j ≤ n, then (i) create n new nodes y1, · · · , yn with L(〈x, yi〉)← {S },

(ii) L(yi)← X for some X ∈ Flat(C) and yi 6
.
= y j for 1 ≤ i < j ≤ n.

≤-rule : if (1) (≤ nS .C) ∈ L(x), (2) x has n + 1 S -neighbors y0, . . . , yn s.t. X ⊆ L(yi) for some X ∈ Flat(C), (3) there
are two S -neighbors y, z of x with X1 ⊆ L(y), X2 ⊆ L(z) for some X1, X2 ∈ Flat(C), y is not an ancestor of z, and
not y 6 .= z, then (i) L(z)← L(z) ∪ L(y) and L(〈x, y〉)← ∅ ;
(ii) if z is an ancestor of x then L(〈z, x〉)← L(〈z, x〉)∪ {Inv(R) | R ∈ L(〈x, y〉)}, else L(〈x, z〉)← L(〈x, z〉)∪ L(〈x, y〉) ;
(iii) add u 6 .= z for all u such that u 6 .= y.

≤r-rule : if (1) (≤ nS .C) ∈ L(x), (2) x has n + 1 S -neighbors y0, · · · , yn s.t. X ⊆ L(yi) for some X ∈ Flat(C),
(3) yi 6

.
= y j does not hold for some 0 ≤ i < j ≤ n where yi, y j are root nodes,

then (i) L(yi)← L(yi) ∪ L(y j),
(ii) for all edges 〈y j,w〉 : if the edge 〈yi,w〉 does not exist, create it with L(〈yi,w〉) = ∅ ;

set L(〈yi,w〉)← L(〈yi,w〉) ∪ L(〈y j,w〉),
(iii) for all edges 〈w, y j〉 : if the edge 〈w, yi〉 does not exist, create it with L(〈w, yi〉) = ∅ ;

set L(〈w, yi〉)← L(〈w, yi〉) ∪ L(〈w, y j〉),
(iv) set L(y j)← ∅ and remove all edges to/from y j, (v) set u 6 .= yi for all u with u 6 .= y j, et (vi) set y j

.
= yi.

sat-rule : if sat-rule has never been applied to x then (i) choose a subset S ⊆ sub(O) such that
L(x) ∪

⋃
X∈Flat(nnf(¬CtD)),CvD∈T

X ⊆ S , and (ii) set L(x)← S ∪ S̄ where S̄ = {¬̇C | C ∈ sub(O) \ S }.

Figure 3 – Expansion rules for SHIQ

expansion rules in Figure 3 yields a complete and
clash-free completion forest from the input ontology
O.

The tableau algorithm can build a completion forest whose
depth is bounded by an exponential function in the size of
O due to the blocking condition. Given a SHIQ ontology
O, a complete and clash-free completion forest F built by
running the tableau algorithm with the expansion rules in
Figure 3 over O is called a forest-like model. According
to soundness of the tableau algorithm (Lemma 1), one can
devise by unraveling a model from a complete and clash-
free completion forest F , denoted Î(F ). Given an axiom
C v D, define Î(F ) |= (C v D) if CÎ(F ) ⊆ DÎ(F ). Given
an assertion C(a) (or R(a, b)), define Î(F ) |= C(a) (resp.
Î(F ) |= (R(a, b))) if aÎ(F ) ∈ CÎ(F ) (resp. 〈aÎ(F ), bÎ(F )〉 ∈

RÎ(F )). Conversely, according to completeness of the ta-
bleau algorithm (Lemma 1), it can build a complete and
clash-free completion forest F from a model I ∈ Mod(O),
denoted F (I). This remark allows us to introduce the fol-
lowing notation.

Notation 1 Let O be a SHIQ ontology.

- Let F a forest-like model constructed by the tableau al-
gorithm which takes O as input. We note Î(F ) the model
of O obtained by unraveling F .

- Let I a model in Mod(O). We note F (I) the forest-like
model of O constructed by the tableau algorithm from I.

Contrary to standard tableau algorithms which terminate
when a forest-like model is found, we design a new tableau
algorithm which has to consider all non-deterministic cases
and build all forest-like models for an ontology O. We use
FM(O) to denote the set of all forest-like models built by
running the new tableau algorithm over a SHIQ ontology
O. Given a set of concepts sub, we define FM(O, sub) to
be the set of all forest-like models built by running the
tableau algorithm on O such that the sat-rule operates on
sub(O)∪sub (i.e. it chooses a subset S ⊆ sub(O)∪sub). In
particular, given an ontologyO′ the set FM(O, sub(O′)) can
be built by running the new tableau algorithm over O with
the sat-rule operating on sub(O) ∪ sub(O′). In addition,
we need to import to O roles which occur in role assertions
from O′. This leads to add to the label of each root edge
〈x̂, ŷ〉 of each forest F ∈ FM(O, sub(O′)) a subset of roles



S R ⊆ RO′ where RO′ is the set of all roles occurring in O′

with their inverse. This new behavior can be formalized as
follows :

• satR-rule : for each root edge 〈x̂, ŷ〉 ∈ E with
G = (V,E,L), F = (G,T 〈x̂1〉, · · · ,T 〈x̂n〉) and F ∈

FM(O, sub(O′)), we set L(〈x̂, ŷ〉)← L(〈x̂, ŷ〉)∪S R for some
S R ⊆ RO′ .

The construction of FM(O, sub(O′)) allows one to import
the signature of an ontologyO′ toOwhen building comple-
tion forests for O. Note that we do not import any new se-
mantic constraint from O′ when building FM(O, sub(O′)).
What we really perform in this construction is to import
into O concepts written in the signature of O′. This impor-
tation may extend FM(O) with new completion forests but
never changes consistency of O.

We now use the notation recently introduced to formulate
the following properties on FM(O) which characterizes the
semantics of an ontology O.

Corollary 1 Let O and O′ be two consistent SHIQ on-
tologies. Let α be a concept axiom or assertion writ-
ten in S(O). Î(F ) |= α for each forest-like model F ∈
FM(O, sub(α)) iff I |= α for each model I ∈ Mod(O).

The Corollary 1 affirms the semantic equivalence between
Mod(O) and FM(O) in the sense that each axiom/assertion
which is satisfied by Mod(O) is satisfied by FM(O), and
conversely. This result allows us to replace a possibly in-
finite set Mod(O) with a finite set FM(O) in constructions
presented in the next sections.

4 Revision Operation

The main goal of the present section is to define a revi-
sion operation which allows for revising a consistent onto-
logyO by axioms from another consistent ontologyO′, and
however O ∪ O′ is inconsistent. Such a revision operation
returns a set of completion forests of which a revised onto-
logy should admit in order to take into account new know-
ledge from O′ and to be semantically as close as possible to
O. These properties on revision operation are captured by
the AGM postulates rephrased for DL ontologies [9]. To
reach this goal, we need to define a distance between two
completion forests which yields a total pre-order over them
and allows one to talk about similarity between two onto-
logies. This distance is an extension of that defined over
completion trees [17].

Definition 4 (Isomorphism) Let
F=(G,T 〈x̂1〉, . . . ,T 〈x̂n〉) and F ′ = (G′,T 〈x̂′1〉, . . . ,T 〈x̂

′
n〉)

be two forest-like models with G = (V,E,L),
G′ = (V′,E′,L′), T 〈x̂i〉 = 〈Vi, Li, Ei〉 and

T 〈x̂′j〉 = 〈V ′j, L
′
j, E
′
j〉 (1 ≤ i, j ≤ n). LetV = V∪V1∪· · ·∪Vn

and V′ = V′ ∪ V ′1 ∪ · · · ∪ V ′n. Let E = E ∪ E1 ∪ · · · ∪ En

and E′ = E′ ∪ E′1 ∪ · · · ∪ E′n. We use succ(x) to denote the
set of successors of a node x in a tree T 〈x̂i〉 or T 〈x̂′j〉 with
1 ≤ i, j ≤ n.

• T 〈x̂i〉 and T 〈x̂′j〉 are isomorphic for 1 ≤ i, j ≤ n if there is
a bijection π from Vi to V ′j such that (i) π(x̂i) = x̂′j ; and (ii)
for each node x ∈ Vi, we have π(x′) ∈ succ(π(x)) for each
x′ ∈ succ(x).

• F and F ′ are isomorphic if there is a bijection π fromV
toV′ such that (i) π(x̂i) = x̂′j for each x̂i ∈ V, (ii) for each
T 〈x̂i〉 ∈ F , two trees T 〈x̂i〉 and T 〈π(x̂i)〉 are isomorphic. In
this case, we say that π is an isomorphism between F and
F ′.

Note that if there exists a bijection π between two trees
T 〈x̂i〉 and T 〈x̂′j〉 as described in Definition 4 then the res-
triction of π to succ(x), denoted π|succ(x), is a bijection from
succ(x) to succ(π(x)).

Remark 1 Let F ∈ FM(O, sub(O′)) and F ′ ∈

FM(O′, sub(O)) two forest-like models with the sets of root
nodes V and V′. It is needed to import all individuals from
O (included in sub(O)) to O′ and reversely when revising
O by new axioms from O′. Therefore, for each individual
a there are a unique tree T 〈x̂i〉 of F and a unique tree
T 〈x̂′j〉 of F ′ such that a ∈ L(x̂i) ∩ L(x̂′j). This implies that
there is a bijection ϕ from V to V′ such that ϕ(x̂i) = x̂′j iff
a ∈ L(x̂i) ∩ L(x̂′j) for some individual a.

Since the notion of isomorphism refers only to the struc-
ture of completion forests, we can always obtain such an
isomorphism between two any completion forests by ad-
ding empty nodes and edges to these completion forests.
This is similar to what we have made between two com-
pletion trees [17]. In the following, we introduce a distance
between two isomorphic completion forests.

Definition 5 (Distance) Let F=(G,T 〈x̂1〉, . . . , T 〈x̂n〉) and
F ′ = (G′,T 〈x̂′1〉, . . . ,T 〈x̂

′
n〉) two forest-like models with

G = (V,E,L), G′ = (V′,E′,L′), T 〈x̂i〉 = 〈Vi, Li, Ei〉 and
T 〈x̂′j〉 = 〈V ′j, L

′
j, E
′
j〉 for 1 ≤ i, j ≤ n. Let ϕ be a bijection

from V to V′ such that ϕ(x̂i) = x̂′j iff there is some indivi-
dual a satisfying a ∈ L(x̂i) ∩ L′(x̂′j). The distance between
F and F ′, denoted d(F ,F ′), is defined as follows :

d(F ,F ′) =

n∑
i=1

d(T 〈x̂i〉,T 〈ϕ(x̂i)〉) +

max
〈x,y〉∈E

(|L(〈x, y〉) M L′(〈ϕ(x), ϕ(y)〉)|)

where d(T,T ′) = min
π∈Π(T,T ′)

{ max
〈x,y〉∈E

(|L(x) M L′(π(x))|+

|L(〈x, y〉) M L′(〈π(x), π(y)〉)| + |L(y) M L′(π(y))|)}

with S M S ′ = (S ∪ S ′) \ (S ∩ S ′) for any two sets S and
S ′, and Π(T,T ′) is the set of all isomorphisms between two



trees T and T ′.

We have defined a distance over forest-like models whose
sets of root nodes should be associated by a bijection ϕ
according to Remark 1. As any distance, d(F ,F ′) should
allow one to measure the difference between two forests
F and F ′—that is—it must satisfy identity, symmetry and
triangle inequality properties. For this purpose, we use an
operator, namely max, which represents the greatest dif-
ference between two triples (composed of an edge and two
nodes) associated by an isomorphism π between F and F ′.
This operation max allows us to ensure the identity pro-
perty but it is not sufficient for guaranteeing the triangle
inequality property d(F ,F ′) ≤ d(F ,F ′′) + d(F ′′,F ′). For
this reason, we must use a further operator, namely min,
which allows for choosing an isomorphism π from all iso-
morphisms between F and F ′ (one of which gets involved
to determine d(F ,F ′′) + d(F ′′,F ′)) such that the greatest
difference between triples associated by π is smallest.

Lemma 2 The function d(F ,F ′) in Definition 5 satisfies
identity, symmetry and triangle inequality properties.

To show that the distance in Definition 5 yields a total pre-
order over a set of isomorphic completion forests, we de-
fine a relation “F ≤ F ′” over isomorphic completion fo-
rests including a forest F0 containing only empty labels as
follows : F ≤ F ′ iff d(F0,F ) ≤ d(F0,F

′).

Lemma 3 The relation “≤” is a total pre-order over iso-
morphic completion forests.

All of the above notions provide sufficiently elements to
define a revision operation for aSHIQ ontologyO by ano-
ther ontology O′.

Definition 6 (Revision Operation) Let O and O′ be two
consistent SHIQ ontologies. A set of forest-like models of
the revision of O by O′, denoted FM(O,O′), is defined as
follows :

FM(O,O′) = {F ∈ FM(O′, sub(O)) | ∃F0 ∈ FM(O, sub(O′)),
∀F ′ ∈ FM(O′, sub(O)),F ′′ ∈ FM(O, sub(O′)) :

d(F ,F0) ≤ d(F ′,F ′′)}

Intuitively, among the forest-like models in
FM(O′, sub(O)), FM(O,O′) retains only those which
are closest to forest-like models from FM(O, sub(O′))
thanks to the distance d(F1,F2) that characterizes the
difference between F1 and F2.

Example 2 Consider again the ontology UNI of Example
1. As for simplification, assume that O is an ontology ob-
tained by adding into UNI the axioms from Table 1, and
O′ consists of δ1, δ2. By applying the new tableau algo-
rithm over O, the set FM(O, sub(O′)) contains 3 forest-
like models F1,F2, and F3 in Figure 4. By running the
new tableau algorithm over O′, we obtain a forest-like mo-
del F ′1 ∈ FM(O′, sub(O)) illustrated in Figure 4 among

other forest-like models. By applying the distance formula
introduced in Definition 5, we obtain d(F ′1 ,F3) = 4 and
d(F ′1 ,F1) = d(F ′1 ,F2) = 2. According to Definition 8,
FM(O,O′) contains a unique forest-like model F ′1 . Note
that d(F ′x ,Fy) > 2 for all Fy ∈ FM(O, sub(O′)) and
F ′x ∈ FM(O′, sub(O)) with F ′x , F

′
1 .

As mentioned in Section 1, our goal is to propose a revision
operation that ensures the principle of minimal change in-
troduced by Alchourrón, Gärdenfors and Makinson [4] as
postulates in belief revision framework. Katsuno and Men-
delzon [11] have rephrased these postulates for propositio-
nal knowledge bases and shown that the existence of a total
pre-order over models of a propositional knowledge base
is equivalent to the satisfaction of the postulates. Inspired
from Katsuno and Mendelzon’s work [11], we rephrase the
postulates in our setting as follows.

(P1) Î(F ) |= α for each forest-like model F ∈ FM(O,O′)
and each axiom α ∈ O′.
(P2) If FM(O, sub(O′)) ∩ FM(O′, sub(O)) , ∅ then
FM(O,O′) = FM(O, sub(O′)) ∩ FM(O′, sub(O)).
(P3) If O′ is consistent then FM(O,O′) , ∅.
(P4) If FM(O1, sub(O′1)) = FM(O2, sub(O′2))
and FM(O′1, sub(O1)) = FM(O′2, sub(O2)) then
FM(O1,O

′
1) = FM(O2,O

′
2).

(P5) FM(O,O′) ∩ FM(O′′, sub(O) ∪ sub(O′)) ⊆

FM(O,O′ ∪ O′′).
(P6) If FM(O,O′) ∩ FM(O′′, sub(O) ∪ sub(O′)) , ∅ then
FM(O,O′∪O′′) ⊆ FM(O,O′)∩FM(O′′, sub(O)∪sub(O′)).

Intuitively, (P1) guarantees that all axioms from O′ can be
inferred from the revised ontology. (P2) says that the ini-
tial ontology O is not changed if O ∪ O is consistent. (P3)
is a condition preventing a revision from introducing un-
warranted inconsistency. (P4) says that the revision should
be independent of the syntax of ontologies. In fact, if we
replace O1 and O′1 with O2 and O′2 such that they admit the
same forest-like models then revision ontologies admit the
same forest-like models as well. (P5) and (P6) can ensure
the principle of minimal change.

Theorem 1 The revision operation FM(O,O′) described in
Definition 6 satisfies the postulates (P1)-(P6).

The equivalence between the existence of a total pre-order
over forest-like models and the satisfaction of (P1)-(P6)
also holds in our setting. Indeed, FM(O,O′) in Definition 6
retains only forest-like models from FM(O′, sub(O)) which
are closest to forest-like models from FM(O, sub(O′)) ac-
cording to the distance between completion forests. This
distance infers the total pre-order “≤” over forest-like mo-
dels. This observation allows us to get straightforwardly
the result saying that the postulates imply a total pre-
order over forest-like models since we consider only mo-
dels such as forest-like models over which a total pre-order
exists already. In addition, the clause that a total pre-order



α4 : ¬Professor v ∀supervises.(¬Student) u Someone who is not a professor cannot supervise any student and
(≤ 1 teaches.Course) does not teach more than a course

α5 : Student⊥Course,Student⊥Professor, A student is not a course nor a professor nor a researcher nor an expert
Student⊥Researcher,Student⊥Expert (note that A⊥B is equivalent to A v ¬B)

α6 : Course⊥Professor,Course⊥Researcher,
Course⊥Expert A course is not a professor nor a researcher nor an expert

Table 1 – Axioms added into the ontology UNI

F1 :

x

{{Alex},Professor,Researcher,¬Expert,¬Student,
¬Course,∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student} ∪ X

teaches

z

{Course} ∪ X

teaches

w

{Course} ∪ X

F2 :

x

{{Alex},Professor,¬Researcher,Expert,¬Student,
¬Course,∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student} ∪ X

teaches

z

{Course} ∪ X

teaches

w

{Course} ∪ X

F3 :

x

{{Alex},Professor,Researcher,Expert,¬Student,
¬Course,∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student} ∪ X

teaches

z

{Course} ∪ X

teaches

w

{Course} ∪ X

F ′1 :

x

{{Alex},Professor,¬Researcher,¬Expert,¬Student,
¬Course,∃supervises.Student,≥ 2 teaches.Course}

supervises

y

{Student} ∪ X

teaches

z

{Course} ∪ X

teaches

w

{Course} ∪ X

where X = {¬Professor,¬Expert,¬Researcher,∀supervises.(¬Student), (≤ 1 teaches.Course)}

Figure 4 – Completion forests yielding models of UNI (F1,F2,F3) and of {δ1, δ2} (F ′1 )

over forest-like models implies the postulates is proved by
Theorem 1. Therefore, the principle of minimal change is
also ensured in our revision.

5 Computing The Revised Ontology

In this section, we present a procedure for constructing a
SHIQ ontology O∗ that admits at least forest-like mo-
dels in FM(O,O′). It has turned out [8] that there may not
exist a DL-lite ontology which admits exactly a given set
of models. It is also the case for SHIQ ontologies. To ad-
dress this issue, we are borrowing the notion of maximal
approximation from De Giacomo and colleagues’ work [8]
to define upper approximation ontology in our setting as
follows.

Definition 7 (Upper approximation) Let O and O′ be
two consistent SHIQ ontologies with revision operation
FM(O,O′). We use S(O′′) to denote the signature of an on-
tology O′′. An ontology O∗ is an upper approximation from
FM(O,O′) if (i) S(O∗) ⊆ S(O) ∪ S(O′) ; (ii) FM(O,O′) ⊆
FM(O∗) ; (iii) There does not exist any ontology O′′ such
that FM(O,O′) ⊆ FM(O′′) ⊂ FM(O∗).

Definition 7 characterizes the approximation ontology we
should build such that it admits all models in FM(O,O′).
An interesting point is that if such an upper approximation
exists it is unique up to semantic equivalence. We show that
such an upper approximation in Definition 7 actually exists
and propose a procedure to build it.

Definition 8 (Revised ontology) Let O = (T ,R,A) and
O′ = (T ′,R′,A′) be two consistent SHIQ ontologies
with FM(O,O′) = {F1, · · · ,Fn} for 1 ≤ i ≤ n. For
each Fi=(Gi,T 〈x̂1〉, . . . ,T 〈x̂m〉) with Gi = (Vi,Ei,Li) and
T 〈x̂ j〉 = 〈V j, L j, E j〉 (1 ≤ j ≤ m), letVi = Vi∪V1∪· · ·∪Vm.
A revised ontology O∗ = (T̂ , R̂, Â) of O by O′ is defined as
follows : R̂ := R′, T̂ := T ′ ∪ {> v

⊔
1≤i≤n

(
⊔
x∈Vi

(
l

C∈Li(x)

C))},

and Â contains a set of assertions as follows :

{C(x) ∈ A′} ∪ {R(x, y) ∈ A′} ∪
{C(x) ∈ A | X ⊆ Li(x), X ∈ Flat(C), 1 ≤ i ≤ n} ∪
{R(x, y) ∈ A | R ∈ Li(〈x, y〉), 1 ≤ i ≤ n} ∪
{x 6 .= y | x, y ∈ I ∪ I′, x 6 .= y ∈ Fi, 1 ≤ i ≤ n}.

The construction of revised ontology O∗ retains all concept
and role axioms as well as assertions from O′. It also adds
to O∗ a new concept axiom which is built literally from
FM(O,O′). When building a forest-like model F by run-
ning the tableau algorithm onO∗, this concept axiom forces
to choose a node x from a forest-like model Fi ∈ FM(O,O′)
to add its label L(x) to the current node of F . Apart from
the forest-like models in FM(O,O′), the tableau algorithm
may build a forest-like model whose nodes have labels
coming from different forest-like models from FM(O,O′).
This is why FM(O∗) may be larger than FM(O,O′).

Note that the concept axiom built from FM(O,O′) al-
lows for capturing semantic parts of only role and concept
axioms fromOwhich should be propagated toO∗. To trans-
fer semantic parts of the assertions from O to O∗, it is nee-
ded to determine assertions from O which remain to be sa-



tisfied in forest-like models from FM(O,O′). This means
that there may be some assertion from O which cannot
be propagated to O∗. For example, O contains assertions
R(a, b), S (a, c) while O′ contains axioms > v ∀R.⊥ and
> v ∀S .>. By construction, each forest-like model for O′

has an empty edge between a and b but a is an S -neighbor
of c. This implies that S (a, c) but not R(a, b) will be added
to O∗.

Example 3 To continue Example 2, we construct from
FM(O,O′) an ontology O∗ which admits a unique forest-
like model F ′1 according to Definition 8. Thus, O∗ contains
the following axioms : Expert v ∀supervises.(¬Student),
Researcher v ∀supervises.(¬Student) (from O′), and

> v (Professor u ¬Researcher u Expert u
¬Course u ¬Student u ∃supervises.Student u

(≥ 2 teaches.Course) t (Professor u Researcher u
¬Expertu¬Courseu¬Studentu∃supervises.Studentu
(≥ 2 teaches.Course) t (Student u

∀supervises.(¬Student) u (≤ 1 teaches.Course) u

¬Course u ¬Professor u ¬Researcher u

¬Expert) t (Course u ∀supervises.(¬Student) u
(≤ 1 teaches.Course) u ¬Student u ¬Professor u
¬Researcher u ¬Expert), Professor(Alex).

We can now formulate an important result which affirms
that the revised ontology O∗ defined for two given onto-
logies O and O′ according to Definition 8 is an upper ap-
proximation from FM(O,O′). Our argument relies heavily
on the specific behavior of the sat-rule and the particularity
of the concept axiom added to O∗. In fact, if one knows the
result of application of the sat-rule (i.e. the subset S cho-
sen from sub(O)) to each node of a forest-like model, she
knows also the whole forest-like model.

Theorem 2 Let O and O′ be two consistent SHIQ on-
tologies. The revised ontology O∗ of O by O′ is an upper
approximation from FM(O,O′). Additionally, the size of O∗

is bounded by a triple exponential function in the size of O
and O′.

6 Optimizations

So far we have showed that the size of revised ontology is
bounded by a triple exponential function in the size of ini-
tial ontology. This high complexity is not surprising and
arises mainly from the following sources : (i) the cha-
racterization of the ontology semantics by using forest-
like models obtained from exploring all non-deterministic
branches ; (ii) the computation of the distance between two
forest-like models may be exponential in the size of forest-
like models, and (iii) the construction of an upper approxi-
mation ontology forces the tableau algorithm to use the sat-
rule which considers exhaustively non-deterministic cases.

We present optimization techniques to reduce the com-
plexity arisen from the mentioned sources.

6.1 Computing distance between two forests

According to the formula of the distance between two
forest-like models (Definition 5), there is a unique isomor-
phism between two root nodes of two forest-like models.
Therefore, it suffices to investigate optimization of distance
computation between two tree-like structures. We present
an algorithm for computing the distance d(T 〈x0〉,T 〈z0〉)
that runs in time polynomial in the size of two trees T 〈x0〉

and T 〈z0〉. For lack of space, we only give the main ideas
of the algorithm which are founded on the following obser-
vations :

(i) Given an isomorphism π, we denote
h(π) = max〈x,y〉∈E1 (|L1(x) M L2(π(x))| +
|L1(〈x, y〉) M L2(〈π(x), π(y)〉)| + |L1(y) M L2(π(y))|).

There are at most O(`) different values of h(π) where `
is the maximum size of O and O′. In fact, by construc-
tion we have |L(x)| ≤ O(`) and |L(〈x, y〉)| ≤ O(`) for each
node x and edge 〈x, y〉 of trees. This allows us to partition
Π(T 〈x0〉,T 〈z0〉) into groups each of which corresponds to
a value vi ∈ ∆ where vi−1 > vi for all 2 ≤ i ≤ m.

(ii) For each value vi ∈ ∆ from the greatest to the smal-
lest value, it is possible to determine polynomially whether
there exists an isomorphism π ∈ Π(T 〈x0〉,T 〈z0〉) such that
vi > h(π). If there does not exist such an isomorphism π,
we obtain d(T 〈x0〉,T 〈z0〉) = vi. Otherwise, the algorithm
considers the value vi+1.

6.2 Constructing FM(O,O′)

According to Definition 6, FM(O,O′) is built from
FM(O, sub(O′)) and FM(O′, sub(O)) where O is much lar-
ger than O′. As described in Section 3, the tableau al-
gorithm must find all completion forests for O to build
FM(O, sub(O′)). This construction involves at least two
sources of complexity : (i) exponential blow-up arising
from disjunction and numbering restrictions occurring in
O, (ii) exponential blow-up arising from behavior of the
sat-rule.

To address the first source of complexity, we use va-
rious optimization techniques in the literature such as ba-
sic and binary absorptions [13, 1]. However, this com-
plexity belongs to intrinsicness of our characterization of
ontology semantics since we need a model for each intrin-
sic non-deterministic case. Therefore, the construction of
FM(O, sub(O′)) is as complex as answering YES to a query
such as O |= C v D since a reasoner must consider all non-
deterministic cases.



To address the second source of complexity, we perform
the construction FM(O,O′) in several stages : (i) Construc-
ting FM(O, sub(O′)) without sat-rule. (ii) Applying indi-
rectly the sat-rule by using absorption techniques to satu-
rate the labels of nodes and edges in completion forests
from FM(O, sub(O′)). (iii) Constructing FM(O′, sub(O))
by propagating node and edge labels from completion fo-
rests in FM(O, sub(O′)). (iv) Choosing completion forests
from FM(O′, sub(O)) to build FM(O,O′) by computing
distance between completion forests from FM(O, sub(O′))
and FM(O′, sub(O)).

7 Implementation and Experiments

We have implemented a revision engine as prototype, cal-
led OntoRev, which is based on the algorithms and defini-
tions described in the previous sections. Similarly to DL
reasoners such as HermiT [16], Pellet [6], FaCT++ [5],
we have implemented in OntoRev various optimization
techniques such as absorption, core/anywhere blockings.
For instance, we have used basic and binary absorptions
[13, 1] to reduce non-deterministic cases arising from dis-
junction. We have also applied the core blocking technique
[3] beside the pairwise blocking technique to scale down
the size of completion forests. Differently from existing
tableau reasoners, we need to explore all intrinsic non-
deterministic cases involved in ontologies to construct all
completion forests. As a consequence, we always consi-
der worst-case scenarios where all forests would be built
to represent the semantics of an ontology. In the current
version of OntoRev, some optimization techniques such
as pruning of backtracking points for dealing with intrin-
sic non-determinism have not been implemented. The lack
of implementations of advanced optimizations may slow
down OntoRevwhen it runs on ontologies containing a nu-
merous amount of non-determinism.

We have carried experiments on ontologies GALEN, PIZZA
and TRAINING which are modified for simplication. The
reason for this choice is that PIZZA is a small ontology with
a numerous amount of non-determinism arising from dis-
junctions while GALEN would force a tableau algorithm to
build completion forests with a sizeable depth. TRAINING
has resulted from a FUI research project on e-learning 1

which involves a revision engine within its plateform.

We present in Table 2 the ontology characteristics used
for tests in revision of an initial ontology by a revising
ontology, and in Table 3 the obtained results. We have
run all tests on a DELL with 8 Intel 3.4GHz Proces-
sors and 32Gb RAM under Ubuntu. As mention in Sec-
tion 6.2, the construction of FM(O, sub(O′)) without sat-
rule allows us to explore only intrinsic non-deterministic

1. http ://www.omendo.com/plateforme-learning-cafe

Initial Ontology Ontology characteristics

Axioms
Concepts Roles Assertions Inclusion Equivalence Disjointness

GALEN_1 2748 413 2 3238 699 2
GALEN_2 2748 413 1 3239 699 1
PIZZA 99 5 2 259 8 398
TRAINING 451 95 2 442 0 79

Revising Ontology Ontology characteristics

Axioms
Concepts Roles Assertions Inclusion Equivalence Disjointness

REV_GALEN_1 3 2 0 2 0 0
REV_GALEN_2 2 1 0 1 0 0
REV_PIZZA 4 1 0 2 0 0
REV_TRAINING 2 2 1 1 0 0

Table 2 – Ontologies for experiments with characteristics

Ontology Revision result

|FM(O, sub(O′))| |FM(O,O′)| Tree depth N0 of disjunctions Times (sec.)
REV_GALEN_1 1 1 3 11 3
REV_GALEN_2 1 1 6 17 4
REV_PIZZA 4096 4096 2 18 165
REV_TRAINING 2 2 1 4 2

Table 3 – Results of experiments

cases in ontologies. The set FM(O, sub(O′)) can help to
construct FM(O′, sub(O)) since it contains forests candi-
dates which have minimal distances to FM(O, sub(O′)).
Therefore, the size of FM(O,O′) is greater than or equal to
that of FM(O, sub(O′)). In addition, there may exist com-
pletion forests in FM(O,O′) which are equivalent. This ex-
plains why the number of disjunctions (N0 of disjunctions
in Table 3) in the axiom of the resulting ontology O∗ is
small. Moreover, we can also restore axioms from initial
ontology by checking whether a concept name occurs in
a node label of a completion forest and, if that is not the
case, we add directly to the resulting ontology the axioms
transformed by absorption.

8 Conclusion

We have presented in this paper a model-based approach
for revising a SHIQ ontology with individuals. An inter-
esting feature of our approach is to introduce finite struc-
tures, namely completion forests, for characterizing the se-
mantics of a SHIQ ontology. Semantic distance between
expressive ontologies can now be translated onto a distance
between completion forests. This feature is crucial to de-
fine a revision operation which ensures minimal change.
Thanks to that distance we are able to determine a set of
completion forests that a revised ontology should admit. To
deal with inexpressiveness issue, we have introduced the
notion of upper approximation ontology. Finally, we have
also proposed optimization techniques for addressing two
main sources of complexity, and the presented algorithms
have been implemented and tested on various SHIQ on-
tologies.
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