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Résumé : Patrolling is mainly used in situations where the need of repeatedly visiting certain places
is critical. In this paper, we consider a deployment of a wireless sensor network (WSN) that cannot be
fully meshed because of the distance or obstacles. Several robots are then in charge of getting close
enough to the nodes in order to connect to them, and perform a patrol to collect all the data in time. We
discuss the problem of multi-robot patrolling within the constrained wireless networking settings. We
show that this is fundamentally a problem of vertex coverage with bounded simple cycles (CBSC). We
offer a formalization of the CBSC problem and prove it is NP-hard and at least as hard as the Traveling
Salesman Problem (TSP). Then, we provide and analyze heuristics relying on clusterings and geometric
techniques. The performances of our solutions are assessed in regards to networking parameters, robot
energy, but also to random and particular graph models.

1 INTRODUCTION

Multi-agent patrolling consists in organizing the continuous coverage of an area by several agents, e.g.
drones, autonomous vehicles, etc.. Patrolling is predominately used in tasks and applications which require
to repeatedly visit certain places. This is the case of coverage, surveillance (e.g. intruder and anomaly de-
tection), data collection, or rescue operations (e.g. after natural disasters) (Rescue, 2001) (Daniel et al.,
2009). In this regard, each agent follows its own trajectory. The main objective in patrolling optimization is
to minimize the time between two consecutive visits of the same place, called idleness. In the multi-agent
case, the problem is known to be NP-hard, and for most of the scenarios, efficient solutions are periodic and
the trajectories are cycles (Chevaleyre, 2004) (Glad et al., 2008).

In this paper, we consider the problem of multi-robot patrolling constrained by maximum required id-
leness, with application to collection of data produced by a wireless sensor network (WSN), as in Figure
1. We assume that the WSN cannot be fully meshed because of the inter-node distance or because of obs-
tacles. The challenge is therefore to provide solutions to the general problem of patrolling while taking into
account performance metrics induced by the networking constraints.

Having agents patrolling a wireless sensor networks in order to collect the data has been extensively stu-
died in the networking literature, agents being denoted mobile sinks (Tunca et al., 2014). These solutions
have been introduced for coping with poor connectivity among fixed sensors in difficult radio conditions.
The main objective is to improve the network lifetime, which is related to the energy consumed by the nodes
for communicating. While most of the literature focuses on networking issues such as address allocation
and routing protocols, the mobility of a set of sinks (Marta & Cardei, 2009) and the optimization of their
trajectories (Basagni et al., 2008) have also yielded some interest. There is a consensus on the efficiency of
using mobile sinks. In our work, we therefore abstract the networking issues into metrics and objectives for
the multi-agent patrols with communication capabilities.

In this work, we express the problem of multi-agent patrolling in WSNs with respect to networking re-
quirements and real life resource limits. We take into account issues like limited sensor memory, sensor
throughput, data delivery time, limited robot energy and memory, and the finite number of robots. Our main
contribution consists in offering, analyzing and testing solutions for the multi-robot patrolling, which res-
pect the requirements of the network as well as robots’ limitations, while trying to minimize the number
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FIGURE 1 – Multi-agent patrolling in a wireless sensor network, for collecting the sensor data. Delivery of
the data is made at the red end stations.

of robots to use. We consider that robots are drones, which means they can fly directly between two sen-
sors, so we use Euclidean distances in the sensor graph. First, we prove the necessity of partitioning the
area, such that each robot will patrol its own region of the sensor graph. Then, we apply a cyclic patrolling
strategy for each region of the graph partition and we explain this choice. For this, we define the CBSC
problem (Covering with Bounded Simple Cycles) which assumes the covering of the graph nodes with a
minimum number of bounded Hamiltonian cycles. We prove this problem is NP-hard and at least as hard as
the Traveling Salesman Problem (TSP), which is NP-hard in turn (Papadimitriou, 1977). We also address
the following questions : how to partition (or how to cover) the nodes of the graph, to improve the solution
for the CBSC ? How to tell whether or not a set of nodes can be covered by an upper bounded Hamiltonian
cycle (using a certain TSP heuristic) ? The heuristics that we analyze are state-of-the-art clusterings and our
proposed North-Eastern Neighbor heuristic, based on geometric computations.

In Section 2, we present the problem setting and related notions, together with the work motivation.
After introducing related work on patrolling, graph partitioning and covering in Section 3, we introduce the
formalization of the CBSC problem and give insights on its complexity in Section 4. Section 5 presents the
adaptation of classic clusterings for CBSC and introduces the North-Eastern Neighbor heuristic. In Section
6, we analyze the performances of these algorithms based on the TSP cycles computed by Christofides
heuristics (Christofides, 1976). The results for CBSC on an extensive set of instances are analyzed with
respect to the practical networking parameters and different graph models.

2 PROBLEM STATEMENT
In our work, we focus on proposing and analyzing solutions for multi-agent patrolling under WSN

constraints, while trying to minimize the number of robots to use. The studied system assumes a Wire-
less Sensor Network (WSN), with fixed sensors, whose positions are known (though approximate positions
are sufficient, within the limit of the radio range). We let G = (V,E) be the complete graph of sensors,
where a sensor s ∈ V is represented by its (x, y) coordinates in the 2D plane, and E contains the n×(n−1)

2
edges. The WSN produces data in real time, and some robots are in charge of performing a patrol to collect
it in time, while taking into account the limited storage and energy they have. The robots possess a limited
wireless communication range, so they can exchange data if it is the case. We assume the robots being
drones, which can easily fly directly between any two sensors. Hence, we consider Euclidean distances bet-
ween any two nodes of G, which is therefore metric. The collected data has to be delivered to an end station
as soon as possible (see Fig. 1). Throughout the paper, we use the terminology of Hamiltonian cycle instead
of simple cycle, when it does not cause any confusion. From now on, we use the definitions of (Chevaleyre,
2004).

Definition 1. Each agent that performs a patrol follows a strategy. An agent strategy is defined as a function
f : N → V , where each value f(i) represents the ith node visited by the agent. A multi-agent strategy is
simply defined as a set of single-agent strategies.

Definition 2. Assuming a patrolling strategy on G, the idleness of a node represents the time elapsed since
the last visit of an agent. For a sensor s ∈ V , its maximum idleness is denoted by MaxIdl(s) (over all
performed visits). The worst idleness is the maximum idleness recorded during the patrolling, among all
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the graph nodes, and it is denoted WI(G). The average idleness of a graph is the average of its nodes’
maximum idlenesses, and it is denoted AvgIdl(G).

There exist multiple types of idleness that we can consider as evaluation metric (Machado et al., 2003)
(Crites & Barto, 1996) (e.g. average idleness, polynomial idleness), but for our sensor graph, we will use
the criteria of the worst idleness, introduced in (Machado et al., 2003). Now we state a formal definition of
the patrolling problem.

Definition 3. For a connected graph G = (V,E), the patrolling problem consists in finding a multi-agent
strategy for visiting the nodes in V , which minimizes WI(G).

We now discuss the requirements and the constraints of the multi-robot patrolling in a WSN, and explain
how we can solve the related issues. We argue why defining and addressing the CBSC problem is needed.

In practice, sensors have limited storage capacity (usually several kilobytes), so by producing data, its
memory gets full at some point. Hence, the sensor storage capacity (denoted Smem) and the throughput
of data production by a sensor (denoted Sthr) give us an upper bound on the maximum idleness that the
patrol should respect, in order to avoid memory overflow and not lose packets : Smem

Sthr
≥ MaxIdl(s) (the

sensor throughput is measured in bytes/sec). Having the bound for MaxIdl(s) and the robot speed (denoted
Rspeed), we can compute the maximum length of the path the robots should walk between two consecutive
visits of the same sensor : Smem

Sthr
×Rspeed. We could also consider the time spent by an agent for collecting

the sensor data, but the sensor radio range permits the robot to collect the data while passing by the sensor
and not stopping. Otherwise, it could just be a constant added to each edge (or node) in the graph, which
can be neglected therefore.

Partitioning motivation

Two constraints which affect the patrolling are related to data delivery time and to robot storage capacity.
We want the data to be delivered as soon as possible to the end station. When dealing with large WSNs,
the delay would be high if delivered after patrolling the majority of the sensors. Hence, it is convenient to
perform this after patrolling a region of the area. Moreover, robots have limited storage capacity, so they
have to discharge the data at some point (through other robots or directly at the end station). This constraint
places a bound on the number of sensors a robot should visit, and together with the delivery time constraint,
it pushes towards the partitioning of the sensor graph. Since we do not want agents to leave their patrolling
region, the data has to be passed between regions, to finally reach the end station. This can be done via inter-
region agent rendezvous, which represent the trade-off when partitioning the area (see Fig. 2) : having too
many rendezvous does not offer any advantage for data delivering, since they require time also. Hence, we
aim at minimizing the number of regions, which in turn minimizes the number of inter-region rendezvous.

Energy consumption is another resource constraint which impacts the patrolling. Robots have limited
energy and they need to recharge periodically. On the other hand, we want them to be able to perform at
least one patrolling iteration of the sensor graph, before they recharge (i.e. to pass at least one time through
each sensor). This constraint may be as well requiring to partition the graph, since the energy may not be
sufficient enough for one iteration of the whole sensor graph. We could also consider energy consumption
in the communication with the sensor, but it can be a constant added to each edge (or node) of the graph,
and therefore can be neglected.

The above arguments express the need of partitioning the sensor graph into regions where the agent
patrolling can respect the imposed constraints. For this, we first state a definition of partitioning :

Definition 4. By partitioning the graph G, we mean covering the set of vertices V with a family of disjoint
sets {Pi}i=1,k , where Pi ⊆ V , and

⋃k
i=1 Pi = V . Here, P is called partition for the graph G (see Fig. 2).

In our setting, we do not benefit of an infinite number of agents. Hence, we minimize resource usage by
requiring a single agent for each region of the graph. Our objective is to use as few robots as possible for
the patrol. A proof of the following result can be found in (Chevaleyre, 2005).

Theorem 1. The optimal patrolling strategy in terms of worst idleness, for the single-agent case, is the
strategy based on the shortest Hamiltonian cycle of the complete graph.

Given this theorem, in the context of our setting, the optimal patrolling strategy to apply inside each graph
region is the shortest Hamiltonian cycle of the subgraph. So we try to cover the sensor graph with cycles
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FIGURE 2 – Partition of a graph, with possible rendezvous paths between its regions (Chevaleyre, 2004).

for patrolling, cycles which respect networking and robot constraints. The bound for MaxIdl(s) and the
limited robot energy impose a bound on the length of the patrolling cycle. This translates into a problem of
vertex covering with bounded simple cycles (CBSC), which we formalize in Section 4.

Before moving forward to related work and problem formalization, we briefly state our contributions :
we address the problem of multi-agent patrolling in WSN by defining the problem of vertex Covering with
Bounded Simple Cycles (CBSC). We prove it is NP-hard, and as a consequence we use heuristics to partition
the graph and to cover it with bounded cycles. In this sense, we consider the Hierarchical Agglomerative
Clustering and show a way it can be adequately used for specific requirements yielded by the networking
metrics and robot limitations. We propose another heuristic which exploits the geometric structure of the
graph, the North-Eastern Neighbour heuristic. We assess the performance of the partitioning algorithms
with respect to the networking metrics, robot energy, and different graph models.

3 RELATED WORK
As presented in the literature (Chevaleyre, 2004) (Portugal & Rocha, 2011), the patrolling of each agent

can be performed over the whole area, or with respect to some regions of the area (as in Fig. 3). Cycling stra-
tegies and partition based strategies have been studied by Chevaleyre (Chevaleyre, 2004). The experimental
results showed that the ones based on cycles performed better than other strategies (such as Cognitive Coor-
dination, or Reinforcement Learning). In addition, the solution improved when the cycling strategies were
combined with the partitioning of the longest edges. We make use of this observation in our solution of Sec-
tion 5. However, no constraints were considered on the patrolling cycles and no bounds on the node idleness.

FIGURE 3 – Agents patrolling across the fixed sensors, in two different scenarios : patrolling of the whole
graph, patrolling of individual regions (Chevaleyre, 2004).

To the best of our knowledge, there is no preferred partitioning algorithm for the multi-agent patrolling
problem, as it is also pointed out in (Chevaleyre, 2004). For particular graphs like grids, Glad et al. (Glad
et al., 2008) used their ant-based EVAW algorithm to prove that when the agents self-organize in cycles
(i.e. each agent patrols a cycle on the grid), these cycles are necessarily of the same length. Area patrolling
under frequency constraints has been studied in (Elmaliach et al., 2009), where all the agents follow one
Hamiltonian cycle on the grid. The frequency constraint is respected by placing the agents at equidistant
positions on the cycle, covering the whole environment. These papers do not consider a partitioned area, nor
a weighted area graph. Partitioning of the area for agent patrolling has been proposed in (Portugal & Rocha,
2010) using the so-called Multilevel Subgraph Patrolling (MSP) algorithm. The authors use the Multilevel
Graph Partitioning (Karypis & Kumar, 1998) to section the area graph and offer a decisional scheme which
gradually proposes patrolling strategies in the order of their performance (e.g. Eulerian cycle, Hamiltonian
cycle, etc.). Here, the partitioning decisions consider the total edge cost of the subgraphs, while trying to
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preserve their dimensions. Hence, the approach is not suitable when trying to avoid merging isolated re-
gions of the graph (and long edges), like we initially prefer to do.

The computation of the shortest Hamiltonian cycle of a graph is a hard combinatorial optimization pro-
blem, known as the Travelling Salesman Problem (TSP). It is proven to be NP-hard (NP-complete for
integer distances (Papadimitriou, 1977)). For this, Christofides (Christofides, 1976) offered a heuristic for
a 1.5-approximation of the TSP solution. Vertex covering with a minimum number of bounded cycles has
been studied for undirected unweighted graphs (Bekkai et al., 2009). The authors provided an upper bound
as a function of graph’s order and graph’s independence number. The problem becomes much harder, since
our setting fundamentally assumes weighted links between nodes (i.e. Euclidean distances).

4 FORMALIZATION (CBSC PROBLEM)
In this section we formalize the CBSC problem and we address it in order to offer an efficient solution

for multi-agent patrolling under WSN constraints. We discuss the main elements of the problem, give a
hardness proof and point out another two variants of CBSC (minimum-weight CBSC and bounded-size
CBSC).

Definition 5. Let G = (V,E) be a complete undirected graph. A real positive value (of finite precision)
is assigned to each edge e ∈ E, representing its length Le. The graph G is assumed to be metric 1. The
problem of Covering with Bounded Simple Cycles requires to cover the set of graph vertices V , with a
minimum number of simple cycles, whose lengths are less then or equal to a bound B.

There is no point in covering the same vertex twice, so we assume the cycles to be vertex-disjoint. Since
we want to minimize the number of robots needed for the patrolling and the number of rendezvous between
regions, we try to minimize the number of cycles. We evaluate the patrolling efficiency in terms of sensor
idleness (concretely, the average graph idleness). In this regard, minimizing the idleness corresponds to the
minimum-weight version of CBSC (MW-CBSC), where, among all the solutions of the CBSC, we search for
the covering with the minimum total length. Related to the finite storage of the robot, avoiding the overflow
corresponds to what we call the bounded-size CBSC (BS-CBSC). This version of the problem imposes a
second bound on the size of each cycle, i.e. the number of sensors (or edges). This constraint is not making
the general problem easier, since the cycle length does not depend on it, but the problem becomes trivial
if we do not consider anymore the length bound B (or it is big enough to be ignored) : the solution of the
BS-CBSC would be

⌈
|V |
k

⌉
, where k ∈ N is the size bound.

TSP and CBSC complexity

The problem of finding the shortest Hamiltonian cycle in a complete weighted graph is NP-hard, and is
known as a combinatorial optimization problem, named Traveling Salesman Problem (TSP). The Euclidean
TSP (i.e. TSP with Euclidean distances between points in the plane) is proven to be NP-complete (Papadi-
mitriou, 1977). It corresponds to our setting (which we could call Euclidean CBSC), since we are aware of
the sensors’ positions. To denote the TSP solution length, we use the OptTSP notation.

TSP being NP-hard, in practice, people use certain heuristics to finally obtain desired running times
(polynomial time algorithms). Christofides heuristic (Christofides, 1976) runs in time O(|V |3) and it is
proven to deliver Hamiltonian cycles with length no more than 3

2 × OptTSP . This heuristic will be used
throughout the experimental process.

We now state a theorem regarding the hardness of CBSC. The proof can be found in Annex A, and it
is based on the reduction of TSP to CBSC. Its basic idea lies on a "binary search" for the TSP solution.
The decision at every step of the search is made with respect to a value of the bound B. The search time is
O(logOptTSP ) (linear in the precision of the input). Since the reduction time is polynomial in the size of
the input and Euclidean TSP is NP-complete, CBSC is therefore NP-hard.

Theorem 2. CBSC is NP-hard, being at least as hard as the Traveling Salesman Problem (TSP).

Corollary 1. The BS-CBSC and MW-CBSC problems are at least as hard as the CBSC.

1. graph whose edges respect the triangle inequality (Lij + Ljk ≥ Lik , for all i, j, k ∈ V )
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The proof of Corollary 1 can be made easily, since the reduction is straightforward in both cases.
A phase in the solution of CBSC requires that we cover a set of nodes with a bounded simple cycle. For

the computation of a simple cycle on the set, we use the Christofides heuristic with polynomial complexity.
But because of the hardness of CBSC (Theorem 2), the question is how to partition the graph in a reasonable
amount of time (e.g. polynomial time), and consequently, how to tell if a set of nodes can be covered with
a bounded simple cycle. We address the questions through heuristics, in the next section.

5 HEURISTICS FOR CBSC PROBLEM
We now present heuristics for the CBSC problem, which we test and compare in Section 6. We focus

on the core issue of the problem : the partitioning of the sensor graph for cycle coverage. State-of-the-
art heuristics for vertex partitioning include clustering algorithms, such as the hierarchical clusterings. We
describe a heuristic of this type and show a way it can be adapted to our needs. Then, we present also our
proposed N-EN heuristic.

5.1 Clustering Heuristics
For the partitioning of the sensor graph we consider clustering algorithms, such as the ones based on

hierarchies, densities or centroids (e.g. k-Means clustering). Here, we choose the HAC heuristic because
of the quadratic running time and the linkage properties it assumes. It does not assume predefined cluster
centers (like the k-Means clustering), nor taking exponential time to run (like the divisive hierarchical
clustering).

Hierarchical Agglomerative Clustering (HAC)

One popular clustering strategy is the hierarchical one (Jain et al., 1999), which forms the cluster hie-
rarchy either using the top-down (divisive) approach, or the bottom-up (agglomerative) one. HAC uses
a proximity matrix and forms clusters incrementally based on the inter-node and inter-cluster distances.
Hence, the clusters are formed according to the node connectivity (linkage), which is appropriate when
trying to cover as many nodes as possible with an upper bounded cycle. HAC is known to be an efficient
clustering algorithm, whose complexity is O(|V |2 log |V |). We now show a possible way of using this
heuristic for bounded cycle coverage.

HAC for CBSC problem

In order to use HAC clustering for the CBSC problem, we need to tell when a cluster is pertinent to form
a cycle on it. So we introduce a condition for the evaluation of clustering : when a set of nodes is evaluated
as sufficient enough for obtaining a Hamiltonian cycle with length close to the bound B, then we "freeze"
that set (we do not continue to enlarge it). Consequently, it will be considered as a region of the final graph
partition. The heuristic used for the evaluation of a set of nodes is a constant time function, which computes
on the fly a Hamiltonian cycle on the nodes that are sequentially added to the set : if i and j are the first,
respectively the last node added to the cluster, and the current cluster is evaluated to s ∈ R, then for every
new node k, the heuristic will test if s + Ljk + Lki ≤ B. In case the inequality is true, the set of nodes is
considered adequate to be covered by a Hamiltonian cycle upper bounded by B, and s is set to s+Ljk. We
use the same technique to evaluate a set of nodes in the case of the N-EN partitioning heuristic.
Cluster evaluation : For the realization of this cluster evaluation, we perform a depth-first search (DFS)
of the cluster tree containing the hierarchy. Before we backtrack, we evaluate the cluster lying at that node
of the tree. If it is considered adequate by the evaluation heuristic, then we move to its parent node (which
represents its merging with another cluster). If the parent node is evaluated as inadequate, then we freeze
the previous visited cluster (its child node) and move on to the unvisited children of the parent node. Since
the search is a DFS, the algorithm stops when reaching the root of the cluster tree.

5.2 N-EN Heuristic Proposal
In the case of HAC, the clusters are formed in parallel based on the proximity matrix, which can result in

too small or too big clusters (before a merging step, and respectively after). In addition, a part of the graph
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nodes do not get aggregated in any cluster until late in the clustering process. If before they do, the cluster
is frozen by the partitioning heuristic, then the nodes will remain isolated, resulting in one-node regions. If
we want to avoid these events, we need another type of heuristic. For this, we propose the North-Eastern
Neighbor (N-EN) heuristic.

The N-EN heuristic assumes another parameter (Lmax) which represents the maximum length allowed
of any edge in the graph, hence defining the neighbors in the heuristic. We propose the following algorithm
(Alg. 1) that consists of the main phases used in computation :

Algorithm 1: The proposed approach for CBSC

1 Do not consider edges e ∈ E, with e > Lmax, when forming the neighbor lists
2 Obtain the connected components of the graph G
3 for every connected component of G do
4 Run the N-EN heuristic for vertex partitioning
5 Run Christofides heuristic on every region of the partition

In the first phase of the algorithm, obtaining the neighbor lists according to Lmax is done in quadratic
time O(|V |2), which makes the proposed heuristic have the same time complexity as HAC. To obtain the
connected components of G, we use the Tarjan SCC algorithm (Tarjan, 1971), which runs in linear time
O(|V |). After this, the nodes will be partitioned according to the N-EN heuristic, so that we finally obtain
Hamiltonian cycles within our constraints. What follows regards the lines 4 and 5 of the Algorithm 1.

Algorithm 2: North-Eastern Neighbor Heuristic (+ Christofides execution)

1 for all connected components (C) of the graph do
2 Sort the nodes in C by their (x+ y) sum
3 S = ∅
4 while there are unvisited nodes inside C do
5 v = choose the most North-Eastern node from C (not visited), which is neighbor to S
6 (mark it as visited)
7 S = S ∪ v ;
8 for all the unvisited neighbors n of v do
9 if eval(S ∪ {n}) ≤ B then

10 S = S ∪ n (mark n as visited)

11 // n = last neighbor of v
12 if eval(S ∪ {n}) > B then
13 run Christofides heuristic on S, and store the resulted cycle
14 S = ∅

15 run Christofides heuristic on S, and store the resulted cycle

The choice of starting from the north-eastern part of the area and processing it towards the south-west
is due to the incremental coverage that we want to perform, in a rectangular environment. The diagonal
coverage allows us to incrementally form cycles that do not stop growing once they hit the borders of the
area (this is likely to happen in the case of north departure, when the coverage extends to western or eastern
extremities). Concretely, that is minimizing the risk of covering the nodes at the edges of area with small
cycles (<< B), when they could actually be avoided. The north-east ordering criteria simply considers the
sum of the (x,y) coordinates of every sensor in the area. In Algorithm 2, every time the heuristic freezes a set
of nodes or finishes visiting the neighbors of a node, it will choose the most north-eastern node to continue.
Moreover, in the latter case, it will continue to form the set S starting with the most north-eastern node
(from the connected component) that has a neighbor inside S. In this case, we start a new simple cycle on
the newly added nodes. Its length is added to the evaluation. This is why we may obtain cycles that exceed
B. Otherwise, the heuristic will deliver too many small cycles, while the good ones are the closest to B
(to maximize the ratio %BC / TC, as in Section 6). The evaluation function eval(S) is the same function
as for HAC, used to evaluate a set of nodes according to the bound B. Sorting the nodes can be done in
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FIGURE 4 – The cumulative distribution function (CDF) of the cycle lengths, obtained for B = 150 and
500 random graphs of 100 nodes, using the N-EN heuristic. X-axis : the lengths of the cycles.

N-EN Heuristic HAC clustering
%BC 82.27 92.87
#BC | TC 2679 | 3256 3571 | 3845
%BC / TC ×10 0.25 0.24
worst idleness WI(G) 401 343
avg idleness AvgIdl(G) 96.2 80.1
avg # of iterations 1.5 1.8

TABLE 1 – The results obtained with HAC and N-EN heuristics, on an extensive set of 500 random graphs
of 100 nodes, for B = 150 ; %BC = the percentage of bounded cycles (over TC) ; TC = the total number of
cycles.

O(|V | log |V |) and choosing the most North-Eastern node, neighbor to set S, takes at most O(|V |2) steps
for the whole execution of the algorithm. Visiting the neighbors of each node takes also O(|V |2) time, so
the worst case performance of the algorithm is O(|V |2).

6 PERFORMANCE ANALYSIS
In the experiments, we used the heuristics presented in the previous section (HAC and N-EN), for the

partitioning of the sensor graph. For the computation of a Hamiltonian cycle in each region of the graph
partition, we used the Christofides heuristic. We also implemented the procedures necessary to generate
random positions for the graph vertices in the 2D plane of any size or to consider any particular graph as
input. The vertex positions have been generated using the random uniform distribution. Moreover, all the
experiments have been conducted for an area size of 100 × 100 meters. For HAC, we used the criteria of
complete-linkage clustering (the distance between two clusters C1 and C2 is the maximum distance bet-
ween any node in C1 and any node in C2). We consider that all lengths are measured in meters.

Table 1 presents the results obtained with HAC and N-EN on an extensive set of random graph instances.
The results are compared with respect to the percentage of cycles with length less than B (denoted BC),
with respect to the number of cycles in the coverage (TC), the worst idleness of the patrolling (WI(G)),
the average graph idleness (AvgIdl(G)) and the average number of iterations a robot would have to patrol
(which is actually B/AvgIdl(G)). We also evaluate the ratio %BC / TC (since the desired %BC would be
100, while minimizing TC).

While HAC delivers more cycles respecting the bound B, it also delivers a greater number of cycles than
the N-EN heuristic. In this case, ≈ 93% of the cycles respect the maximum idleness and energy, but their
number is much higher than in the case of N-EN. Hence, we could argue that N-EN performs better in
this sense, but if computing the ratio of these metrics (%BC / TC), we observe that the heuristics actually
have almost equal performances. The WI(G) and AvgIdl(G) of the N-EN are bigger than the ones of
HAC, which may be explained by the fact that N-EN delivered a smaller number of cycles, but with higher
lengths. The average number of iterations a robot would patrol is higher in the case of HAC, which implies
a lower amount of energy consumption (if recharging after 1 iteration), so HAC performs better here. Yet,
regarding the minimization of the number of robots, one would like to obtain a value closer to 1 (but not
less), since this means getting cycles close to B (but not higher), and for this, N-EN behaves better (see
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FIGURE 5 – X-axis : the cycle length. Y-axis : the frequency of the cycle length (in terms of number of
cycles). The frequency of the cycle lengths, obtained for B = 150 and 250 random graphs of 100 nodes,
using the N-EN heuristic.

“avg # of iterations” in Table 1). Overall, though it is convenient to obtain more patrolling cycles which
respect the data collecting frequency (Smem

Sthr
) and the energy constraint, obtaining a higher number of such

cycles means a higher number of graph regions, robots to use and inter-region rendezvous, which does not
optimize the objective of CBSC.

In the CDF of Figure 4, one can see the probability of a cycle to have length (Cl) less than the bound
B : P (Cl < B = 150) ≈ 80%, which corresponds to the data in the Table 1. The CDF increases linearly
uniform up to a threshold around the bound B = 150. This means that the cycle lengths are nearly uniformly
distributed across the interval of [0, 150] (as it can be also seen in Fig. 5). A peak of the CDF is observed
for cycles of small lengths, this being a cause of the random graphs, which often contain groups of isolated
node.

We now discuss in detail the behavior of the N-EN heuristic. We describe the observations with respect
to parameters B and Lmax.

FIGURE 6 – The evolution of the cycle coverage, as Lmax parameter increases (8, 10 and 13). Scenario for
150 nodes and B fixed to 400.

FIGURE 7 – The stabilization of the cycle coverage, as B increases (450, 550 and 650). Scenario for 100
nodes and Lmax fixed to 10.
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FIGURE 8 – The improvement of the cycle coverage, as B and Lmax are modified together (120 − 20,
150− 20 and 120− 22). Scenario for 100 nodes.

Lmax parameter variation

In the graphics of Figure 6, one can observe how the solution changes with respect to the modification of
Lmax. Throughout the experiments, we observed that when Lmax is inside a specific interval, cycles do not
overlap. In the random graph model it is difficult to say which interval is the best. When Lmax increases
above a specific limit, the cycles start to overlap. The complementary situation is true : when the parameter
decreases below a specific value, the cycles start to be smaller or to disappear. The motivation behind this
aspect lies in the N-EN heuristic, where, if Lmax increases, the nodes neighborhood gets larger and the
number of neighbors increases.

B parameter variation

In another scenario, we fix the Lmax. Then, if only the B parameter modifies, the resulted cycles will get
larger and larger on the graph, but at some time they will stabilize (see Figure 7). That is because the Lmax

parameter fixes the set of neighbors for a node, and a set of the partition cannot get larger, even if the bound
B allows this. We can say that the solution stabilizes, as no big differences occur from that point on.

B and Lmax variation

Another thing observed during the experiments with N-EN heuristic is that the variation of B within
a threshold, can lead to better coverage if several values for Lmax are tried. So, by adjusting the two
parameters together, B and Lmax, one may find a set of cycles that do not overlap and that cover all the
sensors (i.e. containing no isolated sensors ; see Figure 8). However, how to properly choose the parameters
remains an open question.

One problem that still persists with the N-EN heuristic is that sometimes a cycle of the coverage is
consistently bigger than all the other ones. From the experimental observations, this exception occurs only
in some graphs, and it may happen because of the way we form the set of nodes inside the heuristic. In some
cases, a post-covering optimization could be done, to redefine the shape of cycles whose edges overlap. In
this sense, other TSP heuristics could be tried as well.

7 CONCLUSION
In the conducted study, we started from the general problem of multi-agent patrolling under the constraints

of wireless sensor networks, problem which has not been studied before in the context that we do. The
novelty that the problem setting brings is the consideration of networking aspects and constraints in the
strategies used for multi-agent patrolling.

This paper addressed the problem of multi-agent patrolling in WSNs by defining and formalizing the
problem of vertex Covering with Bounded Simple Cycles (CBSC). We proved it is NP-hard, and conse-
quently considered polynomial-time algorithms to offer solutions for CBSC. Our algorithms, adapted HAC
and the proposed N-EN heuristic, were evaluated with respect to networking metrics, robot limitations, and
different graph models. Our results show that HAC performs better when it comes of cycles that respect the
networking idleness (WI(G) or AvgIdl(G)), but N-EN tends to form fewer cycles in each coverage. The
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ratio between these metrics finally shows that overall the heuristics have almost equal performance, with a
slight advantage for N-EN (due to the number of cycles it delivers).

Annex A
Proof (Theorem 2). We show that TSP can be reduced in polynomial time to CBSC. Let G = (V,E) be the
graph for which we want to solve the TSP, where E contains the n×(n−1)

2 edge lengths in finite precision.
For simplicity, we round the values to integers (i.e. multiplication by 10|s|, where |s| is the numeric scale of
the lengths). First, let H be the length of a Hamiltonian cycle on G (obtained with Christofides heuristic or
any other algorithm). This gives us an upper bound on the OptTSP . Then, we set the interval for the binary
search : [Left,Right]← [0, H] (or [ 23 ×H,H] suffices in the case of Christofides heuristic). We start the
search by setting the bound for CBSC to the middle of the interval : B ← bLeft+Right

2 c. We check the
solution of the CBSC, to see if the minimum number of cycles is 1 or greater than 1. We set Right← B in
the first case, or Left ← B in the second. The search is performed until L = R, which will represent the
actual OptTSP . The running time of Christofides heuristic is O(|V |3), while the binary search is performed
in O(logH). Hence, the time of the reduction is polynomial in the size of the input.
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